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We propose to combine short-term block-based fuzzy support vector machine (FSVM) learn-
ing and long-term dynamic semantic clustering (DSC) learning to bridge the semantic gap in
content-based image retrieval. The short-term learning addresses the small sample problem by
incorporating additional image blocks to enlarge the training set. Specifically, it applies the nearest
neighbor mechanism to choose additional similar blocks. A fuzzy metric is computed to measure
the fidelity of the actual class information of the additional blocks. The FSVM is finally applied
on the enlarged training set to learn a more accurate decision boundary for classifying images. The
long-term learning addresses the large storage problem by building dynamic semantic clusters to
remember the semantics learned during all query sessions. Specifically, it applies a cluster-image
weighting algorithm to find the images most semantically related to the query. It then applies
a DSC technique to adaptively learn and update the semantic categories. Our extensive exper-
imental results demonstrate that the proposed short-term, long-term, and collaborative learning
methods outperform their peer methods when the erroneous feedback resulting from the inherent
subjectivity of judging relevance, user laziness, or maliciousness is involved. The collaborative
learning system achieves better retrieval precision and requires significantly less storage space
than its peers. C© 2011 Wiley Periodicals, Inc.

1. INTRODUCTION AND RELATED WORK

With the rapidly growing number of digital images on the Internet and in dig-
ital libraries, the need for large image database management and effective image
retrieval tools has been growing. Content-based image retrieval (CBIR) techniques
are viable solutions to finding desired images from multimedia databases. How-
ever, the semantic gap between low-level visual features and high-level semantic
meanings remains a challenging issue to be solved. Humans bridge this gap using
their knowledge about the world. However, computer vision techniques have been
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struggling to bridge this gap ever since the advent of the computer vision. This paper
focuses on bridging the semantic gap using a novel collaborative learning approach.

Present CBIR techniques can be classified into four categories1−3: global fea-
ture based,4−7 region level feature based,8−16 object level feature based,10,16−21 and
relevance feedback (RF) based.7,18,22−25 Among these, RF-based techniques have
been widely used to bridge the semantic gap by learning the user’s query concept
(i.e., query targets). These techniques first solicit the user’s relevance judgments
of retrieved images at each feedback iteration. They then refine retrieval results at
the next iteration by applying short-term and/or long-term learning techniques to
previous judgment information. A query session is finished when the user is satisfied
with the retrieval results.

Short-term learning techniques aim to find out which images are relevant to
the user’s query over the course of a single query session. Query updating and
statistical learning techniques are two common short-term learning techniques. By
using the user’s subjectively labeled information, query updating techniques im-
prove the representation of the query itself, while statistical learning techniques
improve the classification boundary between relevant and irrelevant images or pre-
dict the relevance of unlabeled images which are attainable during the training
stage. Examples of query updating techniques include query reweighing,26 query
shifting,27 and query expansion.28 Examples of statistical learning techniques in-
clude inductive learning and transductive learning. Specifically, inductive learning
techniques, e.g., decision tree learning,29 Bayesian learning,30−32 support vector
machine (SVM) learning,33 fuzzy SVM (FSVM) learning,34 and boosting,35 create
various classifiers which separate the relevant (i.e., positive) and irrelevant (i.e., neg-
ative) images and generalize well on unlabeled images. The transductive learning
technique, e.g., manifold-ranking-based learning,7 uses each unlabeled image as a
vertex in a weighted graph to propagate the ranking score of labeled images. How-
ever, all these short-term learning techniques are limited in their usefulness. Query
updating techniques exclusively use low-level features to update the query concept
and therefore cannot capture the semantic meaning of an image and cannot achieve
satisfactory retrieval results. Statistical learning techniques cannot achieve good
and reliable classification/prediction results due to the small amount of user-labeled
training images. In addition, the short-term learning techniques cannot remember
the user’s feedback after a query session and therefore cannot utilize the user’s
feedback in future retrievals.

To overcome the above shortcomings, long-term learning techniques have been
proposed to discover the relationships among images over the course of multiple
queries. They use historical retrieval experiences over many search sessions to
estimate the semantic relationships of images. State-of-the-art long-term learning
techniques include the statistical correlation technique,36 the semantic space-based
technique,37 the log-based technique,38 and the memory learning technique.39 For
example, the statistical correlation technique uses a triangular matrix to store se-
mantic correlation collected from the statistics of users’ feedback information. Other
three techniques use a square matrix to store measurements of the accumulated se-
mantic correlation between images. The memory learning technique further forms
a knowledge model to learn hidden semantic relations. As the size of the database
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increases, the size of the matrix increases as well to store memorized feedback
information. The matrix may be sparse if all the queries fall into a few semantic
categories. This sparsity may deteriorate the learning performance for a large-scale
database. In addition, erroneous feedback, resulting from inherent subjectivity of
judging relevance, user laziness, or maliciousness, may also lead to store incorrect
semantic information and degrade the retrieval accuracy.

To address the limitations of current CBIR systems, we propose a RF-based,
noise resilient collaborative learning approach to bridging the semantic gap. Our
system effectively uses the RF as a tool to learn semantic clusters (SCs) of the
image database. The proposed method applies a short-term block-based FSVM
learning technique to find a more accurate decision boundary to classify images
as relevant or irrelevant to the query at each feedback iteration. It also applies a
cluster-image weighting algorithm to find the images most semantically related to
the query image. The retrieval results from these two techniques are then combined to
improve the retrieval accuracy. At the end of each query session, a long-term dynamic
semantic clustering (DSC) technique is employed to assign user-labeled images into
appropriate SCs to remember semantic relationships among these images. These SCs
efficiently store accumulated users’ semantic relevance information and significantly
aid the RF task by incorporating the stored semantic knowledge. Our system can
scale well to a large image database since any database only contains a relatively
small number of semantic categories compared to the number of database images.
Here, we summarize the major functionality and contributions of the proposed
system as follows:

• To address the problem of a small number of samples, our short-term learning technique
chooses additional blocks of images to enlarge the training set and learn the user’s query
concept from a more accurate low-level visual perspective. This learning technique is the
first attempt to use block-based FSVM to address the small sample problem in the RF
learning.

• To address the large storage problem, our long-term learning technique uses dynamic SCs
to efficiently store the accumulated semantic relationships among images. This learning
technique is the first attempt to use DSC to compactly store the historical retrieval
experiences over many search sessions.

The rest of the paper is organized as follows. Section 2 describes our proposed
collaborative image retrieval framework by incorporating both short-term and long-
term learning techniques. Section 3 presents the RF-based short-term block-based
FSVM learning technique. Section 4 presents the RF-based long-term DSC tech-
nique. Section 5 demonstrates the effectiveness of our proposed system and shows
the extensive experimental results of comparing our system with peer systems.
Section 6 gives concluding remarks and presents future research directions.

2. THE PROPOSED COLLABORATIVE IMAGE RETRIEVAL
FRAMEWORK

The algorithmic flow of our collaborative learning framework is as follows:
For each database image, two sets of features are extracted offline and saved in
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Figure 1. The proposed collaborative image retrieval framework.

the feature repository. One set contains global color and texture features for initial
retrieval. The other set contains block-based color, edge, and texture features for RF-
based retrieval. When the user supplies a query image q, the system returns the top n

images, which are then classified by the user as either relevant or irrelevant to query
q. This process continues for a few feedback iterations, or until the user is satisfied
with the retrieval results. For each iteration step, the proposed system simultaneously
performs short-term block-based FSVM learning and long-term DSC learning to
return the top n images. The similarity between query q and an arbitrary image Di

in the database, denoted as S(q, Di), is defined as

S(q, Di) = wshort · Sshort(q, Di) + wlong · Slong(q, Di), (1)

where Sshort(q, Di) and Slong(q, Di), respectively, measure the short-term and long-
term similarity scores between q and Di ; wshort and wlong, respectively, are the
weights assigned to the short-term and long-term similarity scores with wshort =
wlong = 0.5 since our experiments show both short-term and long-term learning
techniques equally contribute to the final similarity score. Figure 1 provides an
overview of our collaborative framework, which consists of short-term block-based
FSVM learning and long-term DSC learning.

Short-term learning first splits all labeled training images into five predefined
blocks. Next, it applies the k-means algorithm to group relevant blocks (i.e., the
blocks from relevant training images) into k clusters and group irrelevant blocks
(i.e., the blocks from irrelevant training images) into another k clusters. The clusters
of the relevant blocks may correspond to several semantics (e.g., mountain, beach,
etc.) related to the user’s query concept. The clusters of the irrelevant blocks may
correspond to several semantics that do not match the user’s query concept. For each
cluster, short-term learning chooses the nearest neighboring blocks from the other
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unlabeled database images. These added blocks are given the same label as their
closest cluster, and the accuracy of their labels is estimated by a fuzzy metric. These
blocks and their label accuracy (i.e., weights) are used to enlarge the training set
for the FSVM. We choose the FSVM for training since it captures the nature of the
data better than the SVM, where the partial or ambiguous membership is a common
phenomenon.34 Finally, we compute Sshort(q, Di) by totaling the directed distance
of five predefined blocks of Di to the classification boundary.

Long-term DSC learning first applies a cluster-image weighting algorithm
during each iteration to estimate SCs that the query image represents and to com-
pute Slong(q, Di). The system then returns the top n images ranked by combining
short-term and long-term similarity scores. In our system, a higher similarity score
corresponds to a stronger similarity to the query. At the end of the query session,
long-term DSC learning treats the set of images that have been labeled during all
iteration steps as a new SC. It next computes the occurrence-based similarity and dis-
similarity measures between the new SC and each existing SC, and finds all existing
SCs whose similarity measure sufficiently outweighs the dissimilarity measure. The
new SC is then merged with the SCs found in the previous step by incorporating its
semantic information into the corresponding existing clusters. The merged clusters
are further compared with the other clusters for any additional merging possibilities
to ensure that all the SCs are distinct. The resulting distinct SCs store the memo-
rized feedback information in a compact manner, thus facilitating the cluster-image
weighting algorithm to learn the semantic content of the images.

3. SHORT-TERM BLOCK-BASED FSVM LEARNING

The short-term learning framework contains four components: feature extrac-
tion, fuzzy metric computation for additional blocks, FSVM training, and FSVM-
based similarity score computation. In the following, we explain these four compo-
nents in detail.

3.1. Feature Extraction: Global and Block Feature Extraction

We use the expanded MPEG-7 150-bin edge histogram descriptor (EHD) and
the 64-bin (8 × 2 × 4) HSV-based scaled color descriptor (SCD)40 to extract global
low-level features for each image. The sum of the normalized weighted Euclidean
distance of EHD and the normalized Euclidean distance of SCD between q and Di

is used to measure Sshort(q, Di).
For the following RF sessions, we use block-based local features to represent

each image from a different perspective. In our system, we divide an image into
five predefined non-overlapping blocks, whose layout is shown in Figure 2. This
blocking scheme has shown to be efficient and effective in our prior image annotation
system.41 Even though this blocking system may divide an object into different
blocks or put multiple objects into one block, our proposed collaborative learning
will partially resolve this issue by seamlessly utilizing the fuzzy metric, FSVM, the
cluster-image weighting algorithm, and the DSC algorithm.
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Figure 2. Illustration of the layout of image blocks.

We compute a set of compact low-level features to represent each block. These
features were used in our prior CBIR system42 and were proven to be effective. They
consist of 9-D color, 18-D edge, and 9-D texture features. Specifically, we use the
first three moments in HSV color space to represent color features. We use the edge
direction histogram to represent the edge features in the grayscale image. We use the
entropy of each of nine detail subbands to represent texture features in the grayscale
image. These local features complement the global features to represent an image
from different perspectives and therefore achieve better low-level feature-based
retrieval results.

3.2. Fuzzy Metric Computation for Additional Blocks

At each RF session, the user labels each returned image as either relevant or
irrelevant to the query image. To address the problem of a small number of images
returned at each RF session, we search for additional block-based local features to
expand the training set to more accurately learn the user’s query concepts from the
visual perspective. Expanding the training set also reduces the algorithm’s sensitivity
to noise in the images. We then assign each additional block a label based on its
closeness to relevant and irrelevant clusters. However, these labels may not be in
accordance with the user’s query concept. Therefore, we predict the accuracy of
the labels and assign fuzzy weights to the labels by measuring a fuzzy metric from
the following two perspectives: (1) The distance ratio between the additional block
to the nearest cluster center of the same label and to the nearest cluster center of
the opposite label. If an additional block is closer to the cluster center of the same
label and farther to the cluster center of the opposite label, its assigned label is more
likely to be correct. (2) The classification results of the SVM and the distance to the
classification boundary of the SVM. If the classification result is consistent with the
current label, a larger distance to the classification boundary means that the assigned
label is more likely to be correct. If the classification result is inconsistent with the
current label, a larger distance to the classification boundary means that the assigned
label is less likely to be correct. These two measures of the label accuracy computed
from the distance ratio and active SVM learning are incorporated to measure the
accuracy of the predicted label (i.e., pseudo label). That is, they provide relative
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1. The user labels each of the returned top n images as either relevant or irrelevant to query q.
2. Retrieve five block-based local features for each labeled image, where each of five blocks retains the 

same label (either relevant or irrelevant) as its parent image. 
3. Apply the k-means algorithm to cluster all relevant blocks, where k is empirically determined to be 

eight as in43.  All irrelevant blocks are similarly grouped into eight clusters by applying the k-means 
algorithm. 

4. For each of the eight relevant clusters, choose the five nearest blocks from the remaining database 
images to expand the positive training set.  The negative training set is expanded similarly. 

5. Assign each of the additional unlabeled blocks (i.e., 40 relevant blocks and 40 irrelevant blocks) the 
same label as its associated cluster. 

6. Train an initial SVM classifier using all block-based local features of the user labeled n images. 
7. Employ a fuzzy metric to evaluate the relevance of each pseudo-labeled block xp (i.e., the additional 

block with a predicted label as determined in Step 5). 
7.1. Compute SameD, the distance of xp to the nearest cluster center of the same label. 
7.2. Compute OppD, the distance of xp to the nearest cluster center of the opposite label. 

7.3. If (SameD < OppD), set w1(xp) to be ( ))(1 pxra
e

− .  Otherwise, set w1(xp) to be 0.  Here, w1(xp) is a 

measure of the accuracy of the label of xp, r(xp) is the ratio between SameD and OppD, and α1

is a scaling factor and is empirically set to be 1 in our system. 
7.4. If the pseudo-label is the same as the label determined by the SVM, set w2(xp) to be 

1/( yae 21 −+ ).  Otherwise, set w2(xp) to be 1/ ( yae 21+ ).  Here, w2(xp) is a measure of how well the 
pseudo-label agrees with the label determined by the SVM, y is the distance from xp to the 
SVM boundary, and α2 is a scaling factor and is set to be 1 in our system. 

7.5. Compute the final predicted weight of xp as g(xp) = w1(xp)×w2(xp).

Figure 3. Algorithmic summary of fuzzy metric computation for additional blocks.

correct fuzzy information on the additional chosen image blocks. The algorithmic
overview of the fuzzy metric computation for additional blocks is summarized in
Figure 3.

3.3. FSVM Training

The FSVM is trained using the local features of the blocks of all returned
images and additional blocks, their labels (1 or −1), and their membership values.
In an FSVM, each training sample is associated with a fuzzy membership value μi

ranging from 0 to 1. This value reflects the confidence degree of the class label of
the training data. The higher the value, the more confident the class label. We assign
a membership of 1 to blocks of user-labeled images, and assign a membership of
g(xp) to each additional pseudo-labeled block xp. The FSVM solves the following
optimization problem for m training data of the form (xi ,yi , μi), where xi represents
the ith local feature, yi represents the label (i.e., −1 or 1) of the ith local feature,
and μi represents the fuzzy membership value of the ith local feature:

min
ω,b,ξ

(
1

2
ωT ω + C

m∑
i=1

μiξi

)
,

(2)

subject to yi(ω
T φ(xi) + b) > 1 − ξi, ξi > 0, i = 1, 2, . . . , m.
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Here, C is the penalty parameter of the error term, w is the coefficient vector, b

is a constant, and ξ i is a slack variable for handling nonseparable training data.
The error term ξ i is scaled by fuzzy membership μi . As a result, these membership
values weigh the soft penalty term in the cost function of SVM. That is, training
samples with larger membership values have more impact on the training than those
with smaller values. The nonlinear FSVMs with the Gaussian radial basis function
(RBF) kernel are used in our system due to their excellent results compared with
other kernels.44 This RBF kernel is defined as

K(xi, xj ) = φ(xi)
T φ(xj ) = exp(γ ‖xi − xj‖2), γ > 0. (3)

Two FSVMs related parameters C and γ are predetermined by applying the three-
fold cross-validation and grid-search algorithms45 on exponentially growing se-
quences of C and γ on several sets of prelabeled training images. In our grid-search
algorithm, we used the balance error (i.e., the ratio of the number of false positives
to the number of negatives plus the ratio of the number of false negatives to the
number of positives) to decide the best pair of C and γ . This balance error addresses
the unbalanced data issues. The pair that gives the minimum cross-validation error
is selected as the optimal parameters and is used in our CBIR system.

3.4. FSVM-Based Similarity Score Computation

The sum of the directed distance from each block of an image Di to the
trained FSVM boundary is computed. Here, the directed distance is a distance with
a positive or negative sign where the positive distance falls on the positive side
of the trained boundary and the negative distance falls on the negative side of the
trained boundary. The normalized total directed distance of each image Di is used
to measure Sshort(q, Di) for selecting top images during the RF sessions.

3.5. Complexity Analysis of Short-Term Learning

The complexity of computing global features is O(g) with g being the dimen-
sion of global features (i.e., g = 214). The complexity of computing block features
is O(d) with d being the dimension of local features (i.e., d = 36). The complexity
of computing fuzzy metric is O(KNd), where K is the number of clusters (i.e.,
K = 16) and N is the total number of image blocks (i.e., N = 125). The complexity
of training FSVM is the same as training SVM since the dual problem of FSVM is
a quadratic programming problem, similar to that of SVM. So, the complexity of
the FSVM classifier is O(N3

sv + NN2
sv + dNNsv),46 where Nsv is the number of SVs

(i.e, Nsv � N = 125 in most cases). Once trained, the classification step of FSVM
involves only simple calculation, which is cost efficient.

The algorithm was implemented using Matlab 7.6.0.324 (R2008a) on a Pen-
tium IV Quad CPU at 2.66GHz PC running Windows XP operating system. On
average, it takes 0.11 and 0.49 seconds to compute global and block features for an
image, respectively. For the 12,000-image database, the average retrieval time per
query using short-term learning is 1.3876 seconds for each iterative RF step. This
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computational time can be reduced to around 0.0694 seconds if the algorithm is
implemented in C language.

4. LONG-TERM DYNAMIC SEMANTIC CLUSTERING LEARNING

During the image retrieval process, our system dynamically constructs SCs
based on users’ RF, where each SC corresponds to a high-level semantic category.
The construction of SCs is mainly based on a valid assumption36 that if two im-
ages are jointly labeled as positive examples in a search session, it is likely that
they contain similar semantic content and belong to the same semantic categories.
The higher the number of RF sessions in which the two images are labeled as
positive examples, the higher the semantic similarity between them. Three intu-
itive observations also guide this construction: (1) The semantic relationship among
images is complicated and therefore it is impractical to store all possible semantic
relationships, which may require a lot of storage space for a large-scale image
database. (2) An image normally has several semantics (i.e., contains several inter-
esting objects) and therefore belongs to several semantic categories. (3) Humans
tend to classify objects into semantic categories and remember how well each object
belongs to each category.47 In our proposed long-term learning framework, we first
apply the cluster-image weighting algorithm during each RF iteration step to esti-
mate the relationship of an image to each SC and evaluate the semantic similarity of
two images. We then apply the DSC algorithm at the end of each query session to
identify and merge the SCs that represent the same semantic concept. This algorithm
increases the semantic information provided by the clusters and reduces the storage
space for remembering the historical feedback experiences. In the following, we
explain these two algorithms in detail.

4.1. DSC Algorithm

The basic flow of our DSC algorithm is as follows:

(1) Initially set the SCs as empty (i.e., no query has been submitted so far.)
(2) Each query session generates two sets of images: a set relevant to the query image (i.e.,

a positive set PosSet) and a set irrelevant to the query image (i.e., a negative set NegSet).
This information is used to create a candidate SC SCnew. This cluster is stored as two
N × 1 vectors, where N is the total number of images in the database and the index of
each cell in the vectors corresponds to the index number of the database images. The first
vector, Relatednew, stores the information related to the images in PosSet by recording
1s in the cells whose indices correspond to the images in PosSet and recording 0s in the
remaining cells. The second vector, Occurrednew, stores the information related to the
images in PosSet and NegSet by recording 1s in the cells whose indices correspond to
the images in PosSet and NegSet, and recording 0s in the remaining cells. For ease of
discussion, we call the cells with nonzero values in both Related and Occurred as marked
cells or marked images.
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(3) For each SC SCj (including SCnew and the existing SCs), compute the relevancy of each
marked image Dj,i in Relatedj of SCj to SCj by

M(Dj,i, SCj ) = Related(Dj,i, SCj )

Occurred(Dj,i, SCj )
, (4)

where occurred (Dj,i , SCj ) is the number of times that image Dj,i was returned with other
images from cluster SCj , and related(Dj,i , SCj ) is the number of times that image Dj,i

was labeled as relevant to cluster SCj .
(4) Estimate the similarity between SCnew and each existing SC SCj by computing their

relevancy level (i.e., finding how strongly marked images belong to both clusters) by

Sim(SCnew, SCj ) = max

(∑m1
i=1 M(Dnew,i, SCnew) ∗ M(Dnew,i, SCj )

m1
,

∑n1
i=1 M(Dj,i, SCj ) ∗ M(Dj,i, SCnew)

n1

)
, (5)

where m1 is the number of positive images marked in Relatednew of SCnew and n1 is the
number of positive images marked in Relatedj of SCj .

(5) Estimate the dissimilarity between SCnew and each SCj by computing their irrelevancy
level (i.e., finding how strongly marked images that are relevant to one cluster, but
irrelevant to the other cluster) by

DisSim(SCnew, SCj ) = max

(∑m1
i=1 I (Dnew,i, SCnew) ∗ M(Dnew,i, SCj )

m1
,

∑n1
i=1 I (Dj,i, SCj ) ∗ M(Dj,i, SCnew)

n1

)
, (6)

where I (Dj,i , SCj ) measures the irrelevancy of each marked image Dj,i in Relatedj

of SCj to SCj (i.e., the membership that the image does not belong to the SC) and is
computed as

I (Dj,i, SCj ) =
{

1 − M(Dj,i, SCj ) if M(Dj,i, SCj ) > 0,

0 otherwise. (7)

(6) Compute the difference in similarity and dissimilarity between SCnew and each SCj by

Diff(SCnew, SCj ) = Sim(SCnew, SCj ) − DisSim(SCnew, SCj ) (8)

(7) Find all existing SC SCj s whose Diff(SCnew, SCj ) is larger than 0.25 (i.e., SCj and SCnew

represent the same semantic concept). For each of these clusters, perform the following
operations:

(a) Merge SCj with SCnew by summing occurredj and occurrednew and summing
relatedj and relatednew.
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(b) Treat this merged cluster as SCnew and repeat steps 3–7 to determine whether the
enlarged SC overlaps any other clusters.

(8) If no cluster SCj has Diff(SCnew, SCj ) larger than 0.25 (i.e., SCnew does not represent the
same semantic concept of any existing cluster), add SCnew as a new SC.

Here, Equation 8 evaluates the overall similarity between the new cluster and
each existing cluster by subtracting their similarity level by their dissimilarity level
since any two SCs may share some common semantics and have their own distinct
semantics. The higher the overall similarity, the more similar the two clusters, the
more likely the two clusters should be merged. The merging threshold of 0.25 in step
7 is empirically determined. A small threshold means more SCs may be considered
as similar to the newly constructed SC and merging will occur frequently. A large
threshold means fewer SCs may be considered as similar to the newly constructed
SC and merging will occur infrequently. We experimented with different thresholds
of 0.1, 0.15, 0.2, 0.25, 0.3, and 0.35. The value of 0.25 achieves the best accuracy
and the best retrieval time. It also leads to a reasonable number of SCs, which is
close to the actual number of semantic categories in the database.

Figure 4 illustrates the basic idea of our proposed DSC algorithm. Let us define
each piece of RF as Rc

a,b, where a indicates iterations for a query session, b indicates
the rank of the returned images with 1 being the most similar and m being the least
similar to the query, and c indicates the query number with 1 being the first and
n being the nth query. This DSC algorithm is mainly responsible for providing
the noise-resilient capability since the majority of the feedback is correct and the
merging of two SCs is flexible based on the empirically determined threshold. That
is, each SC (i.e., before merging and after merging) still stores the relatively correct
information.
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Figure 4. Illustration of DSC algorithm. Note: Each cluster is represented by two vectors,
Related and Occurred.
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4.2. Cluster-Image Weighting Algorithm

The cluster-image weighting algorithm is applied to decide which images are
most semantically related to query. It incorporates two strategies in its computation:
(1) If some relevant images in an existing cluster are marked as relevant to query,
it is likely that the other relevant images in the cluster are also relevant. (2) If
some relevant images in an existing cluster are marked as irrelevant to query, it is
likely that the other relevant images in the cluster are also irrelevant. This enables
the system to give high similarity scores to relevant images in clusters the relevant
images reside, while giving low similarity scores to relevant images in clusters the
irrelevant images reside. At each RF iteration, the returned images are divided into
two sets based on the user’s labeling: a positive set and a negative set. For ease of
discussion, we call the query image as q, the positive set as Pos, and the negative
set as Neg. For each database image Di and existing SC SCj , the algorithmic view
of this weighting method is as follows:

(1) Compute the semantic similarity between query q and each SCj by

SemSim(q, S Cj ) = max

⎛
⎝ ∑

Dp∈Pos

related(Dp, SCj )

−
∑

Dq∈Neg

related(Dq, SCj ), 0

⎞
⎠ , (9)

where the first summation term represents the overall similarity between SCj and all the
images in Pos, and the second summation term represents the overall similarity between
SCj and all the images in Neg.

(2) Compute the probability for each SCj to represent the semantic meaning of query q by:

SemProb(q, SCj ) = SemSim(q, SCj )
T∑

i=1
SemSim(q, SCi)

, (10)

where T is the total number of existing SCs.
(3) Compute the semantic similarity between query q and each database image Di as

Slong(q, Di) = 1

T

T∑
j=1

(
SemProb(q, SCj )∗M(Di, SCj )

)
, (11)

where M(Di , SCj ) is the relevancy of image Di to the SC SCj as defined in Equation 4.

Here, we assign the highest value to the image which is the most semantically
similar to the query.
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4.3. Complexity Analysis of Long-Term Learning

The complexity of the DSC algorithm is O(T 2), where T is the number of
clusters to date. The complexity of the cluster-image weighting algorithm is O(T ×
M) with M being the total number of images in the database.

For the 12,000-image database, it takes the DSC algorithm an average of
0.1246 seconds to construct and merge SCs at the end of each query session. It takes
the cluster-image weighting algorithm 0.0537 seconds to compute the semantic
similarity between the query image and all the database images. For our proposed
collaborative system, the average retrieval time per query is 1.5824 seconds for
each RF iteration. This retrieval time can be reduced to around 0.0791 seconds if
converting from Matlab to C.

5. EXPERIMENTAL RESULTS

We extensively tested our CBIR system on the 6,000-COREL database and
the 12,000-image database (i.e., 6,000-COREL images plus 6,000-real-world im-
ages). The COREL database contains 60 categories with 100 images per category.
Similarly, the 6,000-real-world images contain 60 categories with 100 images per
category. We used three websites, e.g., http://www.flickr.com/, http://images.google
.com/, and http://picasa.google.com/, to collect 2,000 images for 20 categories,
respectively. Specifically, we used the APIs of these three websites to search for
20 distinct key words, respectively. We then downloaded top 200 images for each
category and manually picked the most appropriate 100 images.

To evaluate the effectiveness of short-term learning, long-term learning, and
collaborative learning, we designed a set of experiments on the benchmark database,
the 6,000-COREL database. To facilitate the evaluation process, the CBIR system
automatically selects query images and performs the RF process. Specifically, a
retrieved image is automatically classified as relevant if it is in the same seman-
tic category as the query. The first set of experiments evaluated the effectiveness
of the short-term block-based FSVM learning by incorporating correct feedback.
The second set of experiments evaluated the effectiveness of the long-term DSC
learning by constructing SCs using different number of queries and incorporating
correct feedback. We randomly chose 2%, 5%, and 10% from each category of the
image database as queries and performed a query session for each chosen query to
construct three types of SCs, respectively. After the initial training, the system was
then tested using the remaining 90% of the database images as queries. The third set
of experiments evaluated the effectiveness of collaborative learning by, respectively,
using three types of SCs and incorporating correct feedback. Another three sets of
experiments were performed to incorporate the possible erroneous feedback in the
real-world RF processes, wherein erroneous feedback may result from user inherent
subjectivity of determining semantic relevance, user laziness in carefully labeling
each returned image, or user maliciousness in trying to break the retrieval system.
These additional three sets of experiments were evaluated for the effectiveness of
short-term learning, long-term learning, and collaborative learning by incorporating
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5% random erroneous feedback. To introduce the noise, we let the simulated “user”
misclassify some relevant images as irrelevant and some irrelevant images as rele-
vant. In each experiment, we performed four iterations of RF with the top 25 images
returned in each iteration using Equation (1). All the algorithms are compared in
terms of the retrieval precision, which is defined as the ratio between the number of
relevant images returned and the total number of images returned.

To further evaluate the effectiveness of our system, we extensively compared
our system with four state-of-the-art systems on the 12,000-image database from
two perspectives: (1) An image only belongs to one major semantic category; (2)
an image may belong to multiple semantic categories. For each experiment, we
randomly chose 10% of the database as queries and performed the corresponding
query sessions to construct SCs. We finally compared the retrieval performance of
these five systems using the remaining 90% of the database images as queries by
incorporating correct RF and 5% erroneous feedback, respectively.

5.1. Effectiveness of Short-Term Learning on the 6,000-COREL Database

We compared the proposed block-based FSVM learning method with five
short-term learning systems, which include the global FSVM learning method,34

the global soft label SVM learning method as used in short-term learning of the log-
based technique,38 the global SVM learning method as used in short-term learning
of the memory learning technique,39 the manifold method,7 and the block-based
SVM learning method, which uses the same blocking scheme as deployed in our
system. Figure 5a shows a comparison among the average retrieval precision of
these six short-term learning methods without any erroneous feedback. The figure
clearly shows that the manifold method achieves the best retrieval accuracy in four
iterations when compared to the SVM-based methods. This is mainly due to the use
of the stored affinity matrix for propagating the ranking score of labeled images to the
unlabeled images. Among the SVM-based methods, our block-based FSVM method
achieves the best overall performance at the average retrieval precision of 22.8%,
43.3%, 66.2%, and 78.0% in four iterations. The global soft label SVM method
achieves the comparable retrieval accuracy as our block-based FSVM method. The
global SVM method achieves the worst overall retrieval accuracy in four iterations.
The global FSVM method substantially improves the retrieval accuracy of the global
SVM method during the early iterations because expanding the training set may
greatly improve the effectiveness of the FSVM when the training set is small.
However, in later iterations, increasing the training set is not as necessary as in the
early iterations since the training set increases with more RF iterations. Furthermore,
the system may mislabel some of the additionally chosen images and result in less
accurate classification in later iterations. The block-based SVM method improves the
retrieval accuracy more rapidly than the global SVM method as the training set grows
in later iterations. It also achieves better retrieval accuracy than the global FSVM
method in later iterations. This clearly shows the effectiveness of our proposed fuzzy
block-based learning approach since it combines the strengths of the global FSVM
and block-based methods.
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(a)                                                                                  (b) 

Figure 5. Comparison of six short-term learning systems for the 6,000-COREL database: (a)
with correct feedback; (b) with 5% erroneous feedback.

We further evaluated these six systems in the context of erroneous feedback.
Figure 5b compares the average retrieval precision of the five SVM-based learning
methods and the manifold method at the level of 5% random erroneous feedback. It
clearly shows that the mislabeling makes the two non-FSVM methods significantly
decrease their retrieval precision in all iterations when compared to their retrieval
precision achieved using correctly labeled information. The two FSVM methods,
the soft label method, and the manifold method do perform worse with simulated
errors, but the decrease in average retrieval precision is relatively small. Therefore,
they are more resilient than the non-FSVM methods. Specifically, our block-based
FSVM method achieves the average precision of 22.8%, 37.5%, 58.8%, and 70.2%
in four iterations.

In summary, our extensive experimental results clearly show that the fuzzy
metric computation as used in the block FSVM-based method achieves the follow-
ing goals: (1) Provide relatively correct fuzzy information on the additional chosen
image blocks; and (2) make block FSVM-based classification achieve better re-
trieval results than other SVM-based classification when both correct and erroneous
relevance feedback are involved.

5.2. Effectiveness of Long-Term Learning on the 6,000-COREL Database

We compared the proposed long-term DSC learning method with the log-
based learning method as used in long-term learning of the log-based technique,38

and the semantics-based memory learning method as used in long-term learning
of the memory learning technique.39 Figure 6 shows a comparison between the
average retrieval precision of these three long-term learning methods after using a
different number of training queries (i.e., 2%, 5%, and 10% from each category of
the image database) to build the long-term repositories. The figure also compares the
average retrieval precision of these three long-term learning methods in the context
of having no erroneous feedback and having a level of 5% erroneous feedback. It
clearly demonstrates that the proposed long-term learning method performs a little
bit worse with simulated errors, while the other two long-term learning methods
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Figure 6. Comparison of three long-term learning systems for the 6,000-COREL database.
Using 2% of database images as training data and with (a) correct feedback. (b) Five percent
erroneous feedback. Using 5% of database images as training data and with (c) correct feedback.
(d) Five percent erroneous feedback. Using 10% of database images as training data and with (e)
correct feedback. (f) Five percent erroneous feedback.

suffer from a substantial decrease in average retrieval precision with simulated
errors. That is, our long-term learning is more resilient to the erroneous feedback
than the other two peers. It consistently achieves the best retrieval accuracy in all
iterations when erroneous feedback is involved. Specifically, at the 5% noise level, it
achieves the average precision of 32.3%, 43.1%, 43.7%, and 43.8% in four iterations
using 2% of the database images as queries to build SCs; it achieves the average
precision of 42.0%, 55.3%, 56.2%, and 56.3% in four iterations using 5% of the
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database images as queries to build SCs; and it achieves the average precision of
53.1%, 66.1%, 67.3%, and 67.4% in four iterations using 10% of the database images
as queries to build SCs. However, the retrieval performance of our DSC method is
slightly inferior to the memory learning method when correct RF is involved. It is
also important to note that our method achieves these slightly worse results by using
significantly less storage space.

It should be noted that the more queries (i.e., training images) used to build the
learning repository, the higher the retrieval accuracy for all three long-term learning
systems. Their retrieval precision is also almost flat after the systems remember
the semantic relationship among images, which is quite normal since no short-term
learning is taking place.

5.3. Effectiveness of Collaborative Learning on the 6,000-COREL Database

We compared the proposed collaborative learning system (i.e., DSC + block-
based FSVM) with Hoi’s log-based system (i.e., log-based + global soft label
SVM),38 Han’s memory learning system (i.e., memory learning + global SVM),39

a variant of the proposed system that incorporates the global SVM method as the
short-term learning scheme (i.e. DSC + global SVM), and the manifold system.7

Figure 7 shows the average retrieval precision of these five CBIR systems with and
without a 5% chance of the user mislabeling each returned image after using a dif-
ferent number of training queries (i.e., 2%, 5%, and 10% of the database images) to
build the long-term repositories. The figure clearly shows that our proposed system
achieves the best retrieval precision in all iterations with both correct and erroneous
feedback. Figures 7a–7e demonstrate that our variant system achieves a retrieval
performance comparable to the memory learning system when the RF contains no
erroneous information. Therefore, we can safely say that our short-term learning
facilitates long-term learning to significantly boost the average retrieval precision
in all iterations by discovering more relevant images and providing more semantic
information. Meanwhile, our long-term DSC learning addresses the possible unbal-
anced training data issues resulting from early iterations of short-term learning by
utilizing the estimated relationships of images learned over many search sessions.
It should be noted that our proposed system and its variant used significantly less
storage space to achieve better retrieval results than the memory learning system.
Figures 7b, 7d, and 7f demonstrate our proposed system and its variant are resilient
to erroneous feedback, while the log-based system and the memory learning system
significantly drop the retrieval precision in all iterations. This resilience is mainly
due to the merging of similar SCs by using effective overlapping measures as sum-
marized in Equations 4–8. This noise resilience feature is important in the real
world since it is normal for users to make mistakes due to the inherent subjectivity
of determining semantic relevance, user laziness, or maliciousness.

Figure 7 also clearly shows that the size of the training set does affect the
precision of all systems, but it does not significantly affect the performance re-
lationship of the four combined short-term and long-term systems. Our proposed
system performs the best in all six experiments and its variant performs the second
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Figure 7. Comparison of five CBIR systems for the 6,000-COREL database. Using 2% of
database images as training data and with (a) correct feedback. (b) 5% erroneous feedback. Using
5% of database images as training data and with (c) correct feedback. (d) 5% erroneous feedback.
Using 10% of database images as training data and with (e) correct feedback. (f) Five percent
erroneous feedback.

best in most experiments. The log-based system generally performs better than
our variant system at the third and fourth iterations when the correct feedback is
involved. However, it suffers from substantial decrease in the average retrieval pre-
cision with simulated errors, while our variant system achieves better accuracy at
the first two iterations and comparable accuracy at later iterations. The manifold
system only stands out when all four combined short-term and long-term systems
use 2% of the database images as training data to build the long-term repository. In
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summary, by the fourth iteration without simulated user errors, our system achieved
a precision of 94.5% with 600 training queries, 91.7% with 300 training queries,
and 89.9% with 120 training queries. By the fourth iteration with simulated 5%
user errors, our system achieved a precision of 90.7% with 600 training queries,
88.2% with 300 training queries, and 84.4% with 120 training queries. This shows
that a small training set is sufficient for obtaining high retrieval accuracy. This
characteristic is attractive in real-world situations with databases of millions of
images.

5.4. Effectiveness of Collaborative Learning on the 12,000-Image Database

We further compared the retrieval performance of the above five systems on
the 12,000-image database, where an image only belongs to one major semantic
category. Figure 8 shows the average retrieval precision of four CBIR systems with
and without a 5% chance of the user mislabeling each returned image after using
10% of the 12,000 images to build the long-term repositories. The manifold system
cannot run on our computer due to its requirement of several matrices of 12,000 ×
12,000. As a result, the manifold system is not included in the comparison. Figure 8a
clearly shows that our system achieves a best retrieval performance comparable to
its variant system and the log-based system in later two iterations when no erroneous
feedback is involved. However, our system achieves the best retrieval precision and
its variant system achieves the second best retrieval precision in all iterations with
erroneous feedback, as shown in Figure 8b. In summary, by the fourth iteration
without simulated user errors, our system achieved a precision of 75.9% with 1,200
training queries. By the fourth iteration with simulated 5% user errors, our system
achieved a precision of 65.7% with 1,200 training queries.

We also compared the retrieval performance of the four systems on the 12,000-
image database, where an image may belong to multiple semantic categories.
Figure 9 shows the average retrieval precision of four CBIR systems with and
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Figure 8. Comparison of four CBIR systems for the 12,000-image database with one semantic
meaning. Using 10% of database images as training data and with (a) correct feedback; (b) 5%
erroneous feedback.
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Figure 9. Comparison of four CBIR systems for the 12,000-image database with multiple
semantic meanings. Using 10% of database images as training data and with (a) correct feedback;
(b) 5% erroneous feedback.

without a 5% chance of the user mislabeling each returned image after using 10%
of the 12,000 images to build the long-term repositories. Figure 9a clearly shows
that our system achieves a best retrieval performance comparable to the log-based
system in later three iterations when no erroneous feedback is involved. However,
our system achieves the best retrieval precision and its variant system achieves the
second best retrieval precision in all iterations with erroneous feedback, as shown in
Figure 9b. The other two peer systems substantially decrease their retrieval precision
in all iterations when compared to their retrieval precision achieved using correctly
labeled information. In summary, by the fourth iteration without simulated user
errors, our system achieved a precision of 84.8% with 1,200 training queries. By
the fourth iteration with simulated 5% user errors, our system achieved a precision
of 78.6% with 1,200 training queries.

5.5. Storage Effectiveness of Collaborative Learning

Our proposed system uses less storage space to save semantic knowledge
learned to date. Specifically, it requires O(N × C) space where N is the total number
of images in the database, C is the number of SCs learned, and C � N . Based on
our experiments on a 6,000-image database, C was approximately 81 for the variant
of the proposed system and 68 for the proposed system. These are both close to 60,
the optimal number of SCs as determined by humans for the database, as there are
60 categories in the subset of the COREL database used for testing. The value of C

for our proposed system was approximately 139 for the 12,000 images. This value is
close to the optimal number of SCs as determined by humans for the 12,000-image
database. The log-based system, the memory learning system, and other long-term
learning systems require O(N2) space to store the learned knowledge, where N is
the total number of images in the database. In our experiments, the proposed system
stored semantic information on 129 × 12,000 = 1,548,000 relationships, while
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the log-based and the memory learning systems stored semantic information on
12,0002 = 144,000,000 relationships for the 12,000 images. That is, the proposed
system required approximately 1.07% as much storage space as both log-based
and memory learning systems. This efficient storage is necessary for real-world
situations with databases of millions of images.

6. CONCLUSIONS AND FUTURE WORK

This paper introduces a noise-resilient, collaborative learning approach to im-
age retrieval. It seamlessly incorporates short-term block-based FSVM learning and
long-term DSC learning to bridge the semantic gap between low-level visual features
and high-level semantic meanings. Specifically, the short-term learning technique
chooses additional local features to expand the training set and learns the user’s
query concepts from the visual perspective. The long-term learning technique uses
dynamic SCs to efficiently store the accumulated feedback information in a com-
pact manner and learns the user’s query concept from the semantic perspective. The
short-term learning technique effectively addresses the issue of small numbers of
training images being returned at each RF iteration, while the long-term learning
technique reduces the storage requirements for storing long-term feedback infor-
mation. Our extensive experimental results show that our proposed system achieves
a comparable retrieval precision without erroneous feedback and achieves the best
retrieval precision with erroneous feedback when compared to the three peer sys-
tems, i.e., the log-based system, the memory learning system, and its variant. The
proposed system also requires significantly less space and is therefore more capable
of scaling to large databases.

We plan to test the proposed technique for its effectiveness and scalability on
a larger database by comparing with additional emerged state-of-the-arts systems.
Next, we plan to investigate different semantic clustering techniques to determine
the relationships among images for better retrieval. We will also obtain a sufficient
number of human subject tests to simulate the user’s query log information and
to see how our system would do with real human feedback. Finally, we plan to
research the effect of utilizing the state-of-the-art indexing systems48 in the simulated
online image retrieval environment and plan to explore the potential of applying the
proposed technique in the image annotation task by propagating users’ annotations
to related images.
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