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ABSTRACT

We propose a fuzzy combined learning approach to 
construct a relevance feedback-based content-based image 
retrieval (CBIR) system for efficient image search.  Our 
system uses a composite short-term and long-term learning 
approach to learn the semantics of an image.  Specifically, 
the short-term learning technique applies fuzzy support 
vector machine (FSVM) learning on user labeled and 
additional chosen image blocks to learn a more accurate 
boundary for separating the relevant and irrelevant blocks at 
each feedback iteration.  The long-term learning technique 
applies a novel semantic clustering technique to adaptively 
learn and update the semantic concepts at each query 
session.  A predictive algorithm is also applied to find 
images most semantically related to the query based on the 
semantic clusters generated in the long-term learning.  Our 
extensive experimental results demonstrate the proposed 
system outperforms several state-of-the-art peer systems in 
terms of both retrieval precision and storage space. 
 

Index Terms— Content-based image retrieval, short-
term learning, long-term learning, fuzzy support vector 
machine learning, semantic clustering technique
 

1. INTRODUCTION 
 
Relevance feedback techniques have been widely used in 
CBIR to bridge the semantic gap between low-level features 
and high-level semantics.  They allow the user to label the 
returned images as relevant or irrelevant.  Such labeled 
examples are further used to refine retrieval results by short-
term learning and/or long-term learning techniques. 

Short-term learning techniques aim to find out which 
images are relevant to the user’s query over the course of a 
single query.  They include query updating [1, 2, 3] and 
machine learning techniques [4, 5, 6].  However, query 
updating techniques cannot capture semantics (e.g., 
mountain, beach, etc.) by updating the query concept using 
low-level features.  Machine learning techniques cannot 
achieve good and reliable classification by using a small 
number of imbalanced feedback examples.  Furthermore, 

the semantic knowledge obtained in the entire feedback 
process is not remembered.  To overcome the above 
shortcomings, long-term learning techniques have been 
proposed to find out the relationships among images over 
the course of multiple queries.  They include the statistical 
correlation [7], semantic space-based [8], log-based [9], and 
memory learning techniques [10].  However, all these 
techniques require a large matrix to store memorized 
feedback information.  The sparsity of the matrices may also 
make learning not useful for a large-scale database.  
Erroneous feedback further leads to store incorrect semantic 
information and degrade the retrieval performance. 

To address the limitations of current CBIR systems, we 
propose a composite learning method to bridge the semantic 
gap.  We first apply the FSVM-based short-term learning 
technique to learn a more accurate boundary for separating 
the user labeled relevant and irrelevant blocks at each 
feedback iteration.  Specifically, we divide an image into 
five blocks and apply the k-means algorithm to choose 
additional blocks from non-returned database images.  We 
apply a fuzzy metric to assign a weight to each additional 
block to indicate the predicted accuracy of its relevancy 
label.  These additional blocks, together with their labels 
and weights, enlarge the training set for FSVM learning and 
therefore improve the retrieval accuracy of short-term 
learning.  We then apply the long-term learning technique to 
remember the feedback information in semantic clusters.  
Specifically, we apply a semantic clustering technique to 
group the user labeled images into appropriate semantic 
clusters.  We apply a merging method to compactly store 
the memorized feedback information and use a predictive 
algorithm to find images most semantically related to the 
query image.  We finally combine the retrieval results from 
both learning techniques to improve the retrieval accuracy.  
The rest of the paper is as follows: Section 2 presents our 
proposed learning approach.  Section 3 compares our 
system with peer systems.  Section 4 draws conclusions. 

 
2. THE FUZZY COMBINED LEARNING APPROACH 
 
The retrieval process of our system is as follows:  The user 
first supplies a query image q.  The system then returns top 
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n images, which are classified by the user as relevant or 
irrelevant to q.  This process continues for a few iterations, 
or until the user is satisfied with the retrieval results.  For 
each iteration, the system returns top n images based on the 
similarity scores S(q, Di) between q and an arbitrary image 
Di in the database.  Specifically, S(q, Di) is computed by: 
              ),(),(),( ilonglongishortshorti DqSwDqSwDqS            (1) 
where Sshort(q, Di) and Slong(q, Di) respectively measure the 
short-term and long-term-based similarity scores between q 
and Di; wshort and wlong are their corresponding weights. 

 
2.1. Short-term-based Low-level Retrieval 

 
For the initial retrieval, we use the expanded MPEG-7 150-
bin edge histogram descriptor (EHD) and the 64-bin HSV-
based scaled color descriptor (SCD) to extract global low-
level features. The Euclidean distances between EHDs and 
SCDs of q and Di are computed to measure Sshort(q, Di). 

In the following iterations, we search for additional 
blocks from non-returned database images and compute 
their labels and weights to enlarge the training set for 
improving FSVM learning.  Here, the Gaussian radial basis 
function (RBF) kernel is used.  We use the blocking scheme 
in [11] to divide each image into five blocks.  That is, each 
image is horizontally divided into three blocks and the 
middle block is further evenly divided into three sub-blocks.  
The algorithmic overview of our short-term framework is: 

1. Compute Sshort(q, Di), which measures the distance 
between q and Di in the global low-level feature space. 

2. Return top n images similar to q based on Sshort(q, Di). 
3. The user labels n images as relevant or irrelevant to q.  
4. Train an SVM classifier using five blocks of each of 

the user labeled n images, where each block retains the 
same label (relevant or irrelevant) of its parent image. 

5. Apply the k-means algorithm to separately cluster 
relevant and irrelevant blocks, where k is 
experimentally set to be 8. 

6. For each of the eight clusters of relevant blocks, 
choose five additional unlabeled blocks, which are 
closest to the cluster center, from non-returned 
database images to expand the positive training set. 
The negative training set is expanded similarly. 

7. Assign each additional unlabeled block xa a label, 
which is the same as its associated cluster. 

8. Evaluate the relevance membership (i.e., the predicted 
accuracy of the relevancy label) of each block xa as: 
a. Calculate r(xa), the ratio between the distance of xa 

to the nearest cluster center of the same label and 
the distance of xa to the nearest cluster center of the 
opposite label. 

b. Set w1(xa), a measure of the correctness of the 
assigned label, to 0 if r(xa) 1.  Otherwise, set 
w1(xp) to )(1 axrae , where a1=1 is a scaling factor. 

c. Set w2(xp), a measure of how well the assigned 
label agrees with the label determined by the 

trained SVM, to 1/(1+ yae 2 ) if the two labels 
match.  Otherwise, set w2(xp) to 1/(1+ yae 2 ), where 
a2 = 1 is a scaling factor and y is the distance from 
xa to the SVM boundary. 

d. Compute the final predicted weight of xa as 
                                       )()()( 21 aaa xwxwxg                     (2) 

9. Train a FSVM using user labeled and additional 
blocks, where the weights of user positively and 
negatively labeled blocks are respectively 1 and -1, 
and the weight of each block xa is computed by (2). 

10.Add the directed distance from each block of an image 
Di to the trained FSVM boundary and normalize the 
total directed distance to [0, 1].  This normalized total 
directed distance is used as the similarity score Sshort(q,
Di) for selecting images most related to the query. 

11.Repeat steps 2-10 until the user is satisfied with the 
retrieval results. 

Here, we use a set of compact low-level features [12] 
(i.e., 9-D color moments, 18-D edges, and 9-D textures) to 
represent each block to speed up the training and learning 
process. These features also complement global low-level 
features to represent an image from different perspectives 
and achieve better low-level feature-based retrieval results. 

2.2. Long-term-based High-level Retrieval 

Our system constructs semantic clusters based on users’ 
relevance feedback.  Since humans tend to classify objects 
into semantic categories (e.g., mountain, beach, vehicles, 
etc.) and remember how well each object belongs to each 
category, we build our long-term learning framework in the 
similar manner.  If two images are jointly labeled as positive 
examples in a search session, it is likely that they contain 
similar semantic content and belong to the same semantic 
categories.  We then construct a cluster to represent such a 
semantic category and estimate the query semantics by 
evaluating its relationship to each cluster.  We finally 
compute the semantic similarity between the query image 
and each database image. 

The basic framework of the long-term-based high-level 
retrieval is as follows:  Each query session generates two 
sets of images: a set relevant to the query and a set 
irrelevant to the query.  These two sets are treated as a new 
semantic cluster which represents the semantics shared by 
the relevant images and does not represent the semantics of 
the irrelevant images.  A merging algorithm is then applied 
to decide whether this new cluster represents the same 
semantic concept as any existing clusters.  If so, the 
semantic information from the new cluster is added to the 
existing clusters and the new cluster is removed.  Otherwise, 
the new cluster is added to expand the semantic categories.  
A predictive algorithm is finally applied to find images most 
semantically related to the query.  We explain both merging 
and predictive algorithms in detail. 

We first measure the fuzzy membership of an image Di 
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to a semantic cluster J by: 
                              

),(occurred
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where occurred(Di, J) is the number of times that image Di 
has been returned together with the images from cluster J, 
and relevant(Di, J)  is the number of times that image Di has 
been labeled as relevant to the images from cluster J in all 
the relevance feedback iterations. 

We then use this membership to design the merging 
algorithm.  Specifically, we calculate the similarity of two 
clusters by finding the images that are relevant to both 
clusters and calculate the dissimilarity of two clusters by 
finding the images that are relevant to one cluster, but 
irrelevant to the other cluster.  If the cluster’s similarity 
outweighs its dissimilarity, the clusters should be merged.  
The algorithmic view of this merging method is as follows: 

1. Compute the similarity between clusters J and K: 
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 where N is the total number of images in the database.  
This similarity measures the percentage of the 
database images being in both clusters J and K. 

2. Compute the dissimilarity between clusters J and K: 
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 where I(Di, J) defines the irrelevance of image Di to 
cluster J.  I(Di, J) is computed as 1-M(Di, J) if 
relevant(Di, J) >0.  Otherwise, it is set to be 0.  This 
irrelevance value measures the fuzzy membership of 
image Di not being in a semantic cluster J. 

3. If Sim(J, K) outweighs DisSim(J, K) by 0.25, clusters J 
and K are merged by summing occurred(Di, J) and 
occurred(Di, K), and summing relevant(Di, J) and 
relevant(Di, K). 

We finally deploy the predictive algorithm to find 
images most semantically related to the query image.  To 
this end, our system first decides the probability of each 
semantic cluster representing the query semantics.  It next 
calculates the probability of each database image being a 
member of each semantic cluster.  It finally computes the 
semantic similarity between the query and each database 
image as the total of the product of the above two 
probabilities.  Given each database image Di, a semantic 
cluster Jk, a positive set Pos which contains positively 
labeled images in a feedback iteration, and a negative set 
Neg which contains negatively labeled images in a feedback 
iteration, the algorithmic view of this predictive method is: 

1. Compute the degree of Jk representing all images in 
the positive feedback set Pos by: 

                          
PosD
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2. Compute the degree of Jk representing all images in 
the negative feedback set Neg by: 
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3. Determine the degree of Jk representing the semantic 
concept of query q by: 

                       )()()( kkk JunrelatedJrelatedJdifference            (8) 
4. Compute the probability of Jk representing the 

semantic concept of query q by: 
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 where T is the total number of semantic clusters. 
5. Compute the semantic similarity between query q and 

each database image Di as: 
                       T

k
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That is, we assign the highest value to the image which is 
the most semantically similar to the query. 
 

3. EXPERIMENTAL RESULTS 

We tested our CBIR system on a 6000-image Corel 
database, with 100 images in each of 60 distinct semantic 
categories such as vehicles, mountain, beach, etc.  To 
facilitate the evaluation process, our system automatically 
selects query images and performs the relevance feedback 
process.  A retrieved image is automatically classified as 
relevant if it is in the same semantic category as the query.  
Two sets of experiments were designed to evaluate the 
retrieval performance of short-term learning and combined 
learning by incorporating correct and 5% erroneous 
feedback, respectively.  To introduce the noise, we let the 
simulated “user” misclassify some relevant images as 
irrelevant and some irrelevant images as relevant.  For the 
second experimental set, we randomly chose 10% of the 
database as queries and constructed long-term semantic 
clusters by performing a query session for each chosen 
query.  After the training, the system was tested using the 
remaining 5,400 images as queries.  No additional semantic 
clusters were stored during the testing.  In each experiment, 
we performed four feedback iterations with top 25 images 
returned in each iteration using (1) with wLong=wShort. 

 
3.1. Effectiveness of Short-term Learning

 
Fig. 1 compares the proposed block-based FSVM learning 
method with the global SVM learning method, the global 
FSVM learning method [5], and the block-based SVM 
learning method, which uses the same blocking scheme as 
ours.  The algorithms are compared in terms of the retrieval 
precision when correct and erroneous feedback is involved, 
respectively.  Fig. 1(a) shows that our block-based FSVM 
method consistently achieves the best accuracy, while the 
global SVM method achieves the worst accuracy in all 
iterations.  The block-based SVM method performs better 
than the global SVM method in all iterations.  It also 
achieves better retrieval accuracy than the global FSVM 
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method in later iterations.  Fig. 1(b) shows our block-based 
FSVM method is the most resilient against the erroneous 
feedback due to the small decrease in retrieval precision. 

1 2 3 4
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Iteration

P
re

ci
si

on

Region−based FSVM
Global FSVM
Region−based SVM
Global SVM

1 2 3 4
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Iteration
P

re
ci

si
on

Region−based FSVM
Global FSVM
Region−based SVM
Global SVM

 
Fig. 1: Comparison of four SVM-based methods in terms of 
average retrieval precision. Left: with correct relevance 
feedback; Right: with 5% relevance feedback errors. 
 
3.2. Effectiveness of Fuzzy Combined Learning  

 
We compare the proposed fuzzy combined learning system 
with the memory learning system [10] and a variant of the 
proposed system which incorporates the global SVM 
method as the short-term learning scheme.  The three 
systems were respectively tested with and without a 5% 
chance of the user mislabeling each returned image. 

Fig. 2 compares the average retrieval precision of the 
three learning systems.  It shows that our system achieves 
the best retrieval accuracy in all iterations with correct or 
erroneous feedback.  Fig. 2(a) demonstrates the variant of 
our system achieves comparable performance as the 
memory learning technique when the correct feedback is 
involved.  Therefore, we conclude our short-term learning 
facilitates the long-term learning to boost the retrieval 
accuracy in all iterations.  Fig. 2(b) demonstrates our system 
and its variant are resilient to the erroneous feedback, while 
the memory learning technique significantly drops the 
retrieval accuracy in all iterations.  This resilience is mainly 
due to the merging of similar semantic clusters.  This noise 
resilience feature is important in the real world since it is 
normal for users to make mistakes due to the inherent 
subjectivity, user laziness, or maliciousness. 
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Fig. 2: Comparison of three learning methods in terms of 
average retrieval precision. Left: with correct relevance 
feedback; Right: with 5% relevance feedback errors. 
 

Our system performs queries in real time and uses less 
space to save learned semantic knowledge.  It requires 
O(N×C), instead of O(N×N) space used in the memory 
learning technique, where N is the total number of database 
images and C is the number of semantic clusters (C << N). 

4. CONCLUSIONS 
 
This paper introduces a noise-resilient fuzzy combined 
short-term and long-term learning method for CBIR.  The 
proposed system first incorporates additional blocks in 
FSVM-based short-term learning.  It then applies the long-
term-based semantic clustering technique to remember the 
semantic knowledge in clusters and applies the predictive 
algorithm to compute the high-level semantic similarity 
between the query and each database image.  Our extensive 
experimental results show that our system achieves the best 
retrieval accuracy when compared to its variant and its peer 
(e.g., the memory learning-based system).  Our system also 
requires significantly less space and is more scalable to 
large databases. 

We will explore the potential of applying the proposed 
technique in image annotation.  The semantic clustering 
technique will be further studied to determine the relations 
of images.  We will also test the proposed technique on a 
large database, where each image may have multiple 
semantic meanings, for its effectiveness and scalability. 
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