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ABSTRACT

The wide availability of signal processing and language tools to ex-
tract structured data from raw content has created a new opportu-
nity for the processing of structured signals. In this work, we ex-
plore models for the simulation and recognition of scenarios—i.e.,
time sequences of structured data. For simulation, we construct two
models—hidden Markov models (HMMs) and event dependency
graphs. Combined, these two simulation methods allow the speci-
fication of dependencies in event ordering, simultaneous execution
of multiple scenarios, and evolving networks of data. For scenario
recognition, we consider the application of multi-grained HMMs.
We explore, in detail, mismatch between training scenarios and sim-
ulated test scenarios. The methods are applied to terrorist scenario
detection with a simulation coded by a subject matter expert.

Index Terms— Hidden Markov Models, Goal Recognition

1. INTRODUCTION

Many signal processing application have focused on the process
of converting raw data to structured form. For speech applications,
the lexical content as well as the speaker, dialect, and language can
be extracted [1]. For language processing, technologies like infor-
mation extraction can take raw text and convert it to structured data
that encodes entities, relations, and events [2].

In many applications, extracting structure from content is only
part of the problem. With large unstructured masses of multimedia
data available on the world wide web, converting raw data to an-
other form creates a new flood of structured data. Therefore, meth-
ods which look at processing across multiple documents, signals,
images, etc. become critical. For this paper, we consider the detec-
tion and simulation of time-sequenced structured data in the form of
scenarios. This area has many interesting applications including net-
work intrusion detection, terrorist scenario recognition, multi-sensor
fusion, etc. In this paper, we will focus on terrorist scenario recogni-
tion from multimedia content to give concrete examples and address
a relevant real-world application. Prior related work in this area in-
cludes research in keyhole goal recognition [3, 4, 5], partial-order
planning [6], and Petri nets [7].

Our first area of exploration is simulation of scenarios. Simula-
tion is a necessary component of research, since in many cases we
may want to model unseen scenarios. In a broad sense, one ma-
jor use of simulation is for a subject matter expert (SME) to code
a hypothetical scenario which could then be used to query (detect)
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the scenario in a multimedia database. Other complimentary uses
of simulation are to perform parameter tradeoff studies (such as the
ones in this paper) and provide formal descriptions. We describe dis-
crete HMMs and event dependency graphs (EDGs) for simulation.

Our second area of exploration is recognition of sequences of
structured data. In prior work [8], we used support vector machines
to recognize scenarios from structured data. A drawback of this ap-
proach is that it does not provide the time evolution of scenario exe-
cution. Therefore, we explore the use of discrete HMMs for recog-
nition. We propose a multi-grained model for recognition—i.e., a
model which is trained to recognize the coarse structure of a sce-
nario. We explore different types of mismatch which could occur
and explore their effect on recognition.

The outline of the paper is as follows. In Section 2, we out-
line a basic framework for scenario simulation and processing. In
Section 3, we describe methods for scenario simulation with HMMs
and EDGs. Section 4 discusses multi-grained HMM recognition and
mismatch. Finally, in Section 5, we present results for scenario de-
tection under various mismatch conditions with a terrorist scenario
constructed by a SME.

2. SCENARIO PROCESSING FRAMEWORK

2.1. Information Extraction and Graphical Data
We represent the extraction of structured content from raw data us-
ing standard knowledge representation methods [6]. For every in-
put document (signal, image, etc.), we produce a set of objects,
attributes, and predicates conforming to an ontology that describe
structured information in the document. The ontology is based on
standards for information extraction; i.e., primarily the ACE proto-
col [2]. We limit ourselves to first-order binary predicates. We also
use a typed (many-sorted) logic. A typical example extraction from a
document might be Travels(Bob, NewYorkCity) where Bob is an ob-
ject of type per (a person). We group multiple predicate statements
together from a document and call these transactions.

We represent four basic items in our ontology. First, typed ob-
jects encode people, events, and groups. Second, objects can have
attributes. For instance, we might extract ATT age(Bob,25). Third,
predicates representing network relations establish a graph between
objects; a typical network relation might be Knows(Bob,John).
Fourth, binary predicates are used to represent other types of knowl-
edge; e.g., GivesMoneyTo(John,Bob).

2.2. Processing Structured Data

Our framework for simulation and recognition is shown in Figure 1.
A SME encodes a representation of a scenario for simulation that
describes, e.g., a bombing. The simulation is stochastic and can be
used to general multiple distinct instances that are used for model
training. As a separate process, information extraction has been ap-
plied to a data store to produce structured information which is then
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Fig. 1. Framework for Scenario Simulation and Recognition

put back in the data store. After these two steps have been com-
pleted, we can then perform detection using a recognition engine
either on simulated data or on the data store. Results can be returned
as a list of documents ranked by match to the scenario. Alternatively,
a detection score could be produced and a corresponding decision,
scenario present/not-present could be returned.

3. SIMULATING SCENARIOS

3.1. Hidden Markov Model Approach
3.1.1. Overview

Our simulation framework consists of three main components: an
HMM, a knowledge base (KB) and an ontology. The HMM [9] de-
termines the order in which transactions can be observed and the
likelihood of each possible ordering. It also provides a way to con-
cisely represent the multiple courses of action that can be taken at
different points during the development of a scenario. The knowl-
edge base (KB) stores the objects and predicate instances that exist
in the simulated world at each point in time. Its contents can be
modified at any point during simulation to reflect changes in the sce-
nario’s actors, their attributes and the relationships between them.
The last component, the ontology, has been described in Section 2.1.

3.1.2. Hidden Markov Model

HMMs are at the core of our modeling and simulation scheme for
generic scenarios. The structure of the HMM determines the overall
flow of events that constitute the scenario. A scenario is therefore
divided into states; the distinct phases a scenario might go through
during its development.

We assume a discrete HMM with state transition matrix, A =
{aij}. Each state of the HMM, contains a set of transactions that
are representative of that state. The observation symbol probability
distribution, B = {bj(xk)}, describes the probability of observing
transaction xk when the current state of the HMM is sj . In addi-
tion to predicates, transaction definitions can include one or more di-
rectives (e.g., “Generic Network Predicate”). Directives are special
constructs to randomly select predicates from the knowledge base
and make them part of a transaction.

3.1.3. Simulation with an HMM

In this section we outline the overall simulation process:

1. Execute initial KB modifications to introduce initial actors,
their attributes and the initial state of the network.

2. Set current state, qt = initial state of HMM
3. If first time in qt,

Execute all KB modifications specified in qt

4. Randomly choose a transaction, x, from all the transactions
in qt, according to distribution B. If the transaction includes
directives, execute them and append resulting predicates to x.

Fig. 2. Event Dependency Graph
5. Randomly choose the next state, qt+1, based on the transition

probability distribution A
6. Output x
7. Set qt = qt+1

8. If qt = final state of HMM, exit. Otherwise, go to Step 3.

3.2. Event Dependency Graphs (EDGs)

One drawback of using HMMs to model scenarios is that it is dif-
ficult to represent phases that occur in parallel. EDGs leverage
our previous approach by providing an effective way of represent-
ing concurrency in scenarios. Like HMMs, an EDG is a stochas-
tic model that encodes the complete execution of a scenario. It is
used in conjunction with one or more HMMs in a hierarchical 2-
level model. An EDG represents the evolution of a scenario through
coarse-grained components called stages. These stages represent
high-level phases; all of which have to occur for a scenario to be
complete. Each stage in turn is modeled with an HMM of the kind
exposed in the previous sections. Notice the difference in the two ap-
proaches. In the first one, an HMM stands for a complete scenario.
In the second, scenarios are composed of one or more HMMs, each
of which represents an aspect of the scenario at a fine-grained level.
In addition, all the stages of the EDG are executed in a simulation
run whereas in HMMs only states in a single path are executed.

EDGs are essentially constraint graphs (see Figure 2). Each
node corresponds to a stage and therefore to an HMM. Edges corre-
spond to ordering constraints between stages. An edge from stage A
to stage B represents a constraint of the form A ≺ B: A has to be
executed from start to finish sometime before B but not necessarily
immediately before B (analogous to partial-order planning [6]).

We have mentioned that stages execute in parallel but we have
not defined what this means. Since the output of our simulation and
of each stage is a sequence of transactions, when n stages execute in
parallel the result should be a new sequence that interleaves the out-
put of each stage (see Figure 2). To generate the output sequence, we
use an algorithm that allows us to interleave transaction sequences
from concurrent stages on-the-fly, i.e. without having to execute all
concurrent HMMs from start to end. To understand how we achieve
this, we introduce the notion of time.

In many domains, it might be difficult to assess the time duration
of each transaction or predicate. For this reason, we opted for spec-
ifying time durations at the stage level. For each stage, a range of
time is specified representing a lower and upper bound on the dura-
tion of the stage. This time duration can be absolute or relative to the
duration of the other stages. Before starting execution of the EDG,
a specific time value Ti is chosen, within the specified interval, for
each stage i. This becomes the duration of each stage for that simu-
lation run. On-the-fly interleaving is based on determining the time
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instant when the next transaction of each concurrent stage will take
place and executing the HMM which next transaction time is closest
to the current simulation time.

The time stamp φP,t+1 of the next transaction xP,t+1 generated
by stage P is determined by the time gap δP,t+1 between xP,t and
xP,t+1. The time interval δP,t+1 is determined stochastically based
on the structure of the HMM and duration of P . For the sake of ex-
planation, let us assume that the duration of P has been randomly
chosen and that a time stamp is given by an integer number repre-
senting a time displacement from the beginning of the simulation
(t = 0). Let us define the maximum time interval between con-
secutive transactions of stage P , τP , as follows: the stage duration
TP divided by the expected value of the length of P ’s HMM out-
put sequence, LP . Formally, τP = Tp/E[LP ]. With the necessary
definitions in place, we assign a value to φP,t+1 performing the fol-
lowing two steps: 1) δP,t+1 = random value in the interval [0, τP ],
2) φP,t+1 =(current simulation time)+δP,t+1.

3.2.1. Simulation with EDG
In this section we outline the EDG execution process.

1. G = event dependency graph
2. Add all unconstrained nodes of G to set U . According to

the semantics of the EDGs an unconstrained node has no in-
edges.

3. Foreach node, u, in U
Determine the time stamp φu,t+1 of the next transac-
tion that will be generated by HMM in u if it has not
been calculated before.

4. Choose node in U with minimal φu,t+1 based on the calcula-
tions from the previous step. Let us call this node N .

5. Execute HMM in N to get transaction xN,t+1. (Refer to sec-
tion 3.1.3 )

6. Output transaction xN,t+1

7. If the current state of the HMM in N is its final state
(a) Remove all the edges involving N from G.
(b) Remove node N from set U and graph G

8. If U == {∅}
Exit

Else
Go to Step 2

3.3. Graphical Clutter Simulation

Clutter generation consists of three parts. For the first part, we cre-
ate a clutter graph of individuals using the R-mat algorithm [10]. R-
mat creates a random graph with a power-law degree distribution—a
commonly observed distribution in social networks [11]. Connec-
tions between nodes for the R-mat algorithm are kept if at least one
individual is not in the scenario; this strategy preserves the struc-
ture of the scenario social network connections during simulation.
The second part of clutter generation is random transactions on or
between nodes in the clutter graph. A prior over transaction types
is pre-specified, e.g., p(travel(per,location)), and the distribution is
assumed to be stationary during the simulation. The final clutter
generation parameter varies the duty cycle (0−100%) between sce-
nario transactions and clutter transactions. The duty cycle indicates
the asymptotic ratio of the number of scenario to clutter transactions
output by the simulator.

4. SCENARIO RECOGNITION WITH HMMS

4.1. Multi-Grain Recognition Structure

HMMs are an appropriate tool for scenario recognition due to their
ability to correlate observations with hidden states. Observations

correspond to the actions and connections that can be seen in a so-
cial network. The hidden states are the fine details of the scenario,
which cannot be directly detected by observers, such as subtasks in
recruitment and reconnaissance. Using the most likely path, HMMs
can be used to determine the progress of a scenario, enabling human
operators to determine if it is necessary to intervene.

When designing an HMM for recognition, it is important to con-
sider the granularity of the HMM. Having more states makes it easier
to recognize a scenario if the recognition model exactly matches the
generation model. Unfortunately, in the real world, it is likely that
actual scenario will not match the recognition model, so using the
most specific model may not be optimal. Also, human operators that
are trying to detect scenarios may not care about the finer-grained
parts of the scenario; often identifying the larger actions such as re-
cruitment or reconnaissance is enough.

To classify unlabeled examples, the system chooses the class,
c∗, most likely to have generated the episode using c∗ =
argmax

c

P (c|x̂) where x̂ = x1, x2, . . . , xn is the sequence of time-

ordered observations. P (x̂|c) was calculated using the forward al-
gorithm and Bayes rule was applied to obtain the posterior.

4.2. Mismatch and Recognition

Note that the models created by subject experts may not exactly
match future terrorist attacks. Furthermore, even if future terrorist
attacks happen in a similar fashion, some of their actions may go
unobserved and noise in the information extraction may add obser-
vations of irrelevant actions. Therefore, the question is: will recog-
nition models learned on the training data provided by the experts’
models detect new terrorist attacks? We explore this problem by
considerings several mismatches—permutation of action ordering,
dropouts of actions, and duration mismatch.

5. EXPERIMENTS

5.1. Experimental Setup

For the experiments, subject matter experts created a model of the
Valentine’s Day Attack, which occurred on Feb 14, 2005 in the
Philippines by the terrorist organization Abu Sayyaf. This model
was used to generate positive training examples. A mismatched
model was created based on the experts’ model, and was used to gen-
erate the positive testing examples. Randomly created clutter mod-
els were used to generate the negative training and testing examples.
The recognition model with differing amounts of granularity was
trained using simulated data based on the experts’ model. To cre-
ate these models, some states represented separately in the experts’
model were represented as single states in the recognition model.

In each run, the training and testing data sets each consisted of
50 episodes of scenario mixed with clutter and 50 episodes of pure
clutter, and for each test 100 runs were used. In the positive episodes,
the scenario had a 20% duty cycle, and the clutter networks were
generated with 64 nodes and 100 edges. Unless otherwise stated,
the clutter transactions were generated uniformly with respect to the
transaction type, and the testing scenarios were truncated from state
11 on. This truncation leaves approximately 58.8% of the states and
66.7% of the expected scenario length. This truncation was used
because it simulates the need to recognize a possible attack in the
preparation stages, rather than after a bombing has occurred.

The scenario and clutter recognition HMMs’ output and transi-
tion probabilities were trained on the positive and negative training
examples, respectively. Then, testing examples were assigned to the
most probable recognition HMM. The specific mismatch tests run
were— 1) no mismatch between the training and testing models and
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Fig. 3. Effects of scenario truncation on recognition
a truncation of states 11-17, leaving on average 66.7% of the sce-
nario actions, 2) dropping 5 randomly chosen states from the testing
data generation model, 3) setting the probabilities of transitioning to
the next state to a random value in 1-15%, while the original model
had transition probabilities of 5%, 4) reversing states 1-5, on average
50% of the observed actions, 5) reversing states 1-10, 100% of the
observed actions, 6) truncating states 8-17 leaving on average 46.7%
of the scenario actions, and 7) noise with the distribution of actions
matched to that of the scenario.

5.2. Experimental Results

Results are shown in Figure 3 and Table 1. Performance is given in
terms of average equal error rate (EER) across multiple Monte Carlo
runs. An interesting result shown is that having finer granularity in
the recognition model improves the recognition EER. Even in the
cases where the finer granularity made the recognition model struc-
turally match the testing data generation model, the finer grained
models outperform the coarser grained models. One likely cause for
this is that the output probabilities of the finer grained models are
more accurately tuned to that of the scenario, creating better separa-
tion between the noise and the scenario. It is interesting to note that
there is little difference between having 7 and 17 states in the recog-
nition model. Most of the improvement comes from having small
number of states rather than just a single state, like the SVM.

Investigating the effects of truncation on the ability to recognize
scenarios is important because it is desirable to detect attacks in the
planning stages, before a bombing takes place. Depending on the
scenario and the time needed to respond to an attack, it may be nec-
essary to detect the scenario in different places. Figure 3 and Table 1
show the ability of the system to detect the scenario with no trun-
cation, states 8-17 truncated (leaving 41.2% of the states and 46.7%
of the expected scenario length), and states 11-17 truncated (leaving
58.8% of the states and 66.7% of the expected scenario length). The
results indicate that attempting to detect a scenario earlier in its ex-
ecution is harder for the system, but the system still has very good
results. Furthermore, the HMM detection outperforms the SVM de-
tection consistently, and both methods are similarly affected by the
scenario truncation.

Table 1 shows the effects of mismatch between the training data
generation model and the testing data generation model. The re-
sults show that the recognition model is effective despite the mis-
match. The worst performance comes from a full reversal of the
observable states, which is expected. Full reversal of a scenario is

Table 1. Effects of mismatch, truncation, and noise on EER

Testing Data # Recognition States
Generation Model 3 7 17 SVM

No Mismatch 3.42% 0.80% 0.56% 5.80%
Drop 5 States 6.78% 2.92% 2.96% 10.16%
Transition Prob 1%-15% 4.66% 1.74% 1.16% 7.08%
Reverse States 1-5 3.46% 2.28% 2.24% 5.80%
Reverse States 1-10 9.46% 9.28% 8.86% 5.80%
Truncate States 8-17 3.72% 1.76% 1.48% 7.26%
No Truncation 2.00% 0.35% 0.16% 5.05%
Clutter Matched to Scenario 13.90% 3.46% 2.26% 40.74%

the worst case scenario, but it is also not logically possible in most
scenarios. Reversing a scenario means that a bombing might hap-
pen before any planning or recruitment. With smaller reversals, the
HMM performs well, only slightly affected by mismatch. Note that
the SVM recognition is unaffected by reversing the scenario as the
SVM recognition ignores the order of events. With clutter matched
to the scenario, performance with few numbers of states is poor due
to each state’s output probabilities only slightly differing from the
noise output probabilities. However, as the number of recognition
states increases, the output probabilities differ more from the noise,
so the EER improves significantly.

6. CONCLUSIONS
We have demonstrated a framework for simulation and recognition
of scenarios with applications to terrorist activities. Models robust
to mismatch were proposed for simulation and recognition. Future
work includes applying these techniques to open source corpora and
creating advanced feature sets for representing transactions.
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