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ABSTRACT

Before deployment, agents designed for multiagent team set-
tings are commonly developed together or are given stan-
dardized communication and coordination protocols. How-
ever, in many cases this pre-coordination is not possible
because the agents do not know what agents they will en-
counter, resulting in ad hoc team settings. In these prob-
lems, the agents must learn to adapt and cooperate with
each other on the fly. We extend existing research on ad hoc
teams, providing theoretical results for handling coopera-
tive multi-armed bandit problems with infinite discounted
rewards.

Categories and Subject Descriptors

I.2 [Artificial Intelligence]

General Terms

Algorithms, Theory

Keywords

Ad Hoc Teams, Agent Cooperation: Teamwork, coalition
formation, coordination, Agent Reasoning: Planning (single
and multi-agent), Agent Cooperation: Implicit Cooperation

1. INTRODUCTION
Autonomous agents are becoming increasingly prevalent

in society, both as robots and as software agents. As this
trend progresses, there is a growing need for agents to in-
teract and cooperate with other agents. In many situations,
these interactions can be specified ahead of time, as in many
multiagent team settings. However, agents are also becom-
ing more robust and reliable, so it is likely that they will also
encounter agents that are unknown during development. In
these cases, the agents should be able to adapt and cooperate
with these unknown teammates.
In a recent AAAI challenge paper, Stone et al. [13] for-

mally introduced the ad hoc team setting and described it as
a problem in which strategies for team coordination cannot
be specified a priori. As autonomous agents proliferate in
our society, it is important that they are capable of handling
ad hoc team settings. Specifically, we study the effectiveness
of an individual ad hoc team agent’s strategy to cooperate
with a teammate.
The remainder of the paper is organized as follows. Sec-

tion 2 provides a motivating example for this research, and

Section 3 specifies the formal framework that will be used
in this paper, specifically a cooperative multi-armed bandit
with infinite discounted rewards. Then, Section 4 presents
the main contribution, namely theoretical results consider-
ing a three armed bandit with arbitrary distributions of the
arms. Next, Section 5 extends these results for many arms.
Section 6 situates our contribution in the literature, and Sec-
tion 7 concludes.

2. MOTIVATING EXAMPLE
Consider two robots tasked with picking up as much trash

as possible from two beaches. Each robot must recharge its
batteries daily, and between recharging, the travel times to
the beaches, and the tides, each robot is only able to clean
one beach a day. The tides wash away trash that a robot
does not pick up, so the trash does not build up. There-
fore, the robots are set to pick up trash during alternating
tides. Each robot should choose to clean the beach with the
highest amount of trash, but the amount of trash is random,
depending on the weather and popularity of the beaches as
well as additional factors. The robots communicate to each
other about how much trash they found at the beaches they
cleaned. By trying both beaches and tracking the average
amount of trash picked up, the robots can learn to clean
the messier beach with high probability. The robots try to
maximize the trash picked up over time, but they value im-
mediately cleaning over future cleaning.

Suppose that several years have passed and one of the
robots has broken, and original developers no longer work on
the project. Therefore, another robot has been built to help
clean the beaches. The new robot has an internet connection
and can gather information about the popularities of each
beach from a municipal website. Also, a new, more popular
beach has been created, but the old robot does not know the
path to this beach. Unfortunately, this path cannot be added
to the old robot’s memory because the original developers
are not available. The new robot can still communicate the
amount of trash it finds at each beach, but the old robot
cannot receive other information. The new robot’s goal is
still to maximize the amount of trash the robots pick up. If
the new robot were acting alone, it could pick up the most
trash at the new beach, but since it is on a team, it can
also affect what beach the old robot chooses. The old robot
cannot go to the new beach, so the new robot should use its
additional information help guide the old one to clean the
more popular of the older beaches. Another robot is being
built to replace the old robot, but its completion time is



unknown.
The above fictional setting can be formalized as a coopera-

tive multi-armed bandit [12] with infinite discounted rewards
because the robots are interested in their long term rewards,
but value immediate rewards more than later rewards. Im-
mediate rewards are more valuable because there is a chance
that the episode will end before the robots receive any fu-
ture rewards. This problem is similar to the one described
by Stone and Kraus [15], except that we consider infinite
discounted rewards. This formulation is a commonly stud-
ied problem in reinforcement learning [16]. This problem is
a simple form of the ad hoc team problem since the behavior
of the teammate is fixed and known. Despite these limita-
tions, this problem raises interesting questions about how
a knowledgeable agent can teach a novice without explicit
communication while operating embedded in the domain.

3. MULTI-ARMED BANDIT
The multi-armed bandit (MAB) problem [12] is well stud-

ied in sequential decision making. The problem is modeled
after slot machines (often referred to as one-armed bandits),
where an agent must choose between a set of arms to pull.
Each arm has a payoff distribution that is usually unknown
to the agent, and the agent wants to maximize its sum of
payoffs over time. An important problem that comes up
from the multi-armed bandit domain is that of exploration
vs. exploitation, where the agent must decided whether to
pull the arm with the best observed sample mean or pull
other arms to gain more information about their distribu-
tions. The multi-armed bandit problem is a stateless action
selection problem, which is a fundamental problem for rein-
forcement learning theory [16].
This research adopts Stone and Kraus’s [15] formulation of

a multi-agent version of the MAB problem. The agents share
payoffs and want to maximize this shared payoff. Specifi-
cally, there are two agents: a teacher and a learner. The
teacher has complete information about the arm distribu-
tions and the behavior of the learner. The learner has no
prior information and estimates the arm distributions by
observing the results of pulls, and greedily pulling the arm
with the highest sample mean. Importantly, the teacher is
embedded in the environment as a part of the team and its
rewards count towards the team reward, so it cannot focus
on teaching without considering what other rewards it could
achieve. Stone and Kraus consider the case in which there
are a finite number of pulls remaining, with undiscounted re-
wards. They give several interesting results for this case, but
do not handle the case where there are an infinite number of
pulls, which is a common formulation of the MAB problem.
We address this gap, considering infinite sequences of pulls
discounted by a multiplicative factor, γ. We extend the re-
sults from Section 3 of their paper to the infinite play with
discounted rewards scenario.
Intuitively, γ can be seen as either an interest rate or as a

chance of the problem ending. Viewing it as an interest rate,
immediate rewards are more valuable as you can invest the
reward and earn interest over time. On the other hand, if the
episode has a chance of ending, immediate rewards are more
valuable because it is uncertain whether future rewards will
be received. When the number of remaining pulls is known,
γ can be set to 1 because there is no uncertainty about the

episode ending and the maximum reward is bounded. In the
case of infinite pulls, the episode will not end, and setting
γ < 1 is necessary to bound the maximum cumulative reward
achievable from any state.
We consider the case with three arms, where the teacher

may pull any arm, but the learner is constrained to the two
arms with lower expected values. Therefore, the teacher
must sacrifice some reward to show the learner a pull from
a relevant arm. We will refer to these arms as Arm∗, Arm1,
and Arm2, where Arm∗ is the arm only pullable by the
teacher. Let the true expected value of these arms be µ∗,
µ1, and µ2 with µ∗ > µ1 > µ2 w.l.o.g. Similarly, let the ob-
served sample means of Arm1 and Arm2 be x̄1 and x̄2. Note
that if µ∗ is not the largest, the teacher should always pull
the arm with the highest expected payoff. For this paper,
we assume that the teacher and learner alternate pulls and
the discount factor is applied after a pair of pulls, one by
the teacher and one by the learner. Furthermore, we assume
that the learner follows a greedy policy, pulling the arm with
the highest observed sample mean and optimistically pulling
previously unseen arms.

4. THREE ARMS WITH ARBITRARY DIS-

TRIBUTIONS
This section presents theoretical results that apply regard-

less of the distributions of the payoffs for the arms. For these
proofs, we assume that the payoff of each arm only depends
on the underlying distribution and the number of pulls of
that arm, and not on time. In other words, each arm has a
fixed sequence of payoffs that is only moved through when
that arm is pulled.

4.1 The teacher should consider pulling Arm1

It is sometimes beneficial for the teacher to teach, sac-
rificing its pull of Arm∗ to pull Arm1. We know that in
any configuration, the maximum expected value achievable
is (µ∗ +µ1)

1

1−γ
, which occurs when the teacher always pulls

Arm∗ and the learner always pulls Arm1. Similarly, the min-
imum expected value achievable is (µ2 + µ2)

1

1−γ
. Consider

the situation when µ∗ = 10, µ1 = 9, µ2 = 5, x̄1 = 6, x̄2 = 7,
and n1 = n2 = 1. Suppose that the distribution of pay-
offs is known, and the probability of Arm1 obtaining a value
≥ 8 is η > 1

2
. Therefore, if the teacher pulls Arm1, x̄1 will

be greater than x̄2 with probability η. After this pull, the
teacher will play arbitrarily. Let us call this pull and the
following ones S. In the worst case scenario, all remaining
pulls of each agent are of Arm2. Therefore, we know that
E[V (S)] ≥ µ1 + ηµ1 + (1− η)µ2 + γ(µ2 + µ2)

1

1−γ
.

If the teacher instead chooses to pull Arm∗, the learner has
seen only a single, low pull from Arm1, so it will greedily pull
Arm2. Afterwards, the teacher plays arbitrarily, resulting
in sequence T . The best case scenario is that remaining
teacher’s pulls are of Arm∗, and the learner’s are of Arm1.
Then, E[V (T )] ≤ µ∗ + µ2 + γ(µ∗ + µ1)

1

1−γ
.

By comparing these two expected values, we get that if
γ ≤ 0.1, E[V (S)] > E[V (T )]. For example, if η = 0.6
and γ = 0.05, then E[V (S)] ≥ 16.92 and E[V (T )] ≤ 16.0.
Therefore, there are situations in which the teacher should
teach, pulling Arm1 instead of Arm∗.



4.2 If the learner is going to pull Armi, the
teacher should not pull Armi

If the sample mean x̄i is the highest, the learner will pull
Armi if the teacher’s pull does not change the relative values
of the arms. Let a be the value obtained by pulling Armi.
If the teacher pulls Armi, it will obtain ai and then the
learner will pull Armj , obtaining the value aj . Afterwards,
the teacher follows the optimal policy and the learner con-
tinues to play greedily with respect to the sample means,
resulting in the sequence OPT. So the sequence, S, that
occurs if the teacher pulls Armi is given in Table 1. This
gives a total value of

V (S) = ai + aj + γV (OPT)

n 0 1 ...
Teacher ai OPT
Learner aj

Table 1: The sequence, S, resulting from the teacher

pulling Armi

n 0 1 2 3 ...
Teacher a∗ a′

∗ OPT
Learner ai aj

Table 2: The sequence, T , resulting from the teacher

pulling Arm∗ twice instead of Armi

Now, consider an alternative sequence, T , where the teacher
instead pulls Arm∗ twice, and then follows the optimal pol-
icy. If the teacher instead pulls Arm∗, then the learner will
pull Armi and obtain ai. If the teacher then pulls Arm∗

again, the learner will pull Armj and obtain aj . Then, the
optimal policy after these pulls will be the same as in se-
quence S as the learner has seen the same pulls of Arm1 and
Arm2. Let us call the values obtained by pulling Arm∗ a∗

and a′

∗ respectively. Therefore, the sequence T is given in
Table 2 This gives a total value of V (T ) = a∗ + ai + γa′

∗ +
γaj + γ2V (OPT).
Let us look at the expected values of these sequences:

E[V (S)] and E[V (T )]. We know that E[ai] = µi ≤ µ1,
E(aj) = µj ≤ µ1, and E(a∗) = E(a′

∗) = µ∗. So E[V (S)] =
µi+µj+γE[V (OPT )], and E[V (T )] = µ∗+µi+γµ∗+γµj+
γ2E[V (OPT )]. By the definition of OPT, we know

E[V (OPT)] ≤ (µ∗ + µ1)
1

1− γ

(1− γ)E[V (OPT)] ≤ (µ∗ + µ1)

In the following calculations, for the sake of brevity, let
EO = E[V (OPT)]. We know that µ∗ > µi and µ∗ > µj , so

µ∗ > (1− γ)µj + γµi

µ∗ + γµ∗ > (1− γ)µj + γ(µi + µ∗)

µ∗ + γµ∗ > (1− γ)µj + γ(1− γ)EO

µ∗ + γµ∗ + γ
2EO > (1− γ)µj + γEO

µ∗ + γµ∗ + γµj + γ
2EO > µj + γEO

µ∗ + µi + γµ∗ + γµj + γ
2EO > µi + µj + γEO

E[V (T )] > E[V (S)]

The expected value of sequence T is greater than that of
S. Therefore, it is desirable to follow sequence T over S, so
the teacher can achieve higher reward without pulling Armi.
This reasoning shows that pulling Armi is not optimal in this
scenario, so the teacher should not pull Armi if the learner
would currently pull Armi.

4.3 The teacher should never pull Arm2

If x̄2 > x̄1, we know that the teacher should not pull Arm2

from Section 4.2. Therefore, we only need to consider the
case when x̄1 > x̄2.

The intuition of this proof is that the teacher can follow
a policy that either 1) makes its history match up with the
one achieved by pulling Arm2 at least once or 2) if the his-
tories do not match, the new policy is better. To this end,
we use the idea of simulating another series of pulls, as do
Stone and Kraus [15]. The idea is that if the teacher has seen
enough pulls of Arm1 and Arm2, it can tell what it and the
learner would have done in other situations. For example, if
the teacher has seen 5 pulls of Arm1 and 3 pulls of Arm2, it
can reason about any sequence of pulls that would have had
≤ 5 pulls of Arm1 and ≤ 3 pulls of Arm2. Note that pulls
of Arm∗ are irrelevant as they do not affect the teacher or
learner because the teacher already knows the payoff distri-
bution of Arm∗ and the learner does not consider Arm∗.

Definition 1. Si(n) is the number of pulls of Armi in

sequence S after the first n pulls. Therefore, Si(n) of the

first n pulls by the teacher and learner were of arm Armi.

Definition 2. Sim(n) is the greatest round number r such

that T1(n) ≥ S1(r) and T2(n) ≥ S2(r). This corresponds to

the number of pulls of S that the teacher can simulate after

following n pulls of T .

Definition 3. T (n) = S(m) iff T1(n) = S1(m) and T2(n) =
S2(m).

Definition 4. T (n) > S(m) iff T1(n) ≥ S1(m) and T2(n) ≥
S2(m) and at least one of the inequalities is strict.

Let us consider the sequence S that occurs from the teacher
pulling Arm2 and then acting arbitrarily. Then, let T be the
sequence resulting from using the following policy:

1. If n = 0, T (n) > S(Sim(n)), or Sim(n) is odd, choose
Arm∗.

2. Else (if T (n) = S(Sim(n)) and Sim(n) is even), choose
the next action of S.

The idea is that the teacher should pull Arm∗ until its history
matches up to S, and then follow the same policy as used in
S. We want to show that E[V (S)] < E[V (T )]. This would
establish that every policy starting with Arm2 is dominated
by some other policy, so it is not optimal to pull Arm2.

n 0 1 2 3 ...
Teacher Arm2 Arm1

Learner Arm1 Arm2

Table 3: A possible sequence of pulls, S.



n 0 1 2 3 4 5 ...
Teacher Arm∗ Arm∗ Arm1

Learner Arm1 Arm2 Arm2

Table 4: Another possible sequence of pulls, T .

For example, consider the sequences in Table 3 and 4.
Note that S2(1) = 1, S1(1) = 1, T2(3) = 1, and T1(3) = 1.
So Sim(3) = 1, but Sim(2) = 0. Therefore, for pull 4, the
teacher in T will do the same thing as it would for pull 2 of
S (i.e. pull Arm1).
We know that at every point in time, if T has more pulls

of Arm∗ than S and fewer pulls of Arm2 than S, it must
have a higher expected value. Note that all remaining pulls
in both sequences must be of Arm1. We do not condition on
the values of the pulls or on the policy of S since the require-
ments of the following lemmas hold in all cases. Therefore,
we can consider the expected values of each arm indepen-
dently. Therefore, all pulls of Arm2 will have expected value
µ2, etc. So if these conditions hold, we know that the low
pulls of Arm2 will be more discounted in T than in S, and
the high pulls of Arm∗ will be less discounted in T than in S.
Therefore, the E[V (T )] > E[V (S)] if these conditions hold.
Now, we will describe these conditions more exactly and

prove that they hold for these sequences, but first we will rea-
son about the policy for sequence T . Note that the teacher
will start by following the first part of its policy, when n = 0.
If the teacher follows the second part of its policy, there is
at least one n, call it n′, such that T (n′) = S(Sim(n′)) and
Sim(n′) is even. Once the teacher switches to the second
part of its policy, it will take the same actions as the teacher
in S, and the learner will take similar actions. Therefore,
after the teacher switches to the second part of its policy,
T (n) and S(n) will increment similarly, and the teacher will
remain in this part of the policy.

Lemma 1. Sim(n′) < n′

Proof. After n′ steps, there are exactly n′

2
pulls of Arm1

and Arm2 (T1(n
′) + T2(n

′) = n′

2
) because all the teacher’s

pulls have been of Arm∗ until now. But after n′ steps, there

are at least n′

2
+ 1 pulls of Arm1 and Arm2 in sequence S

(S1(n
′) + S2(n

′) ≥ n′

2
+ 1) because the teacher pulled Arm2

at least once, and all the learner’s actions are pulls of Arm1

or Arm2. Thus the simulation of S always lags behind T in
the number of steps simulated: Sim(n′) < n′.

Lemma 2. ∀n > 0, T2(n) ≤ S2(n).

Proof. We will show that T2(n) = S2(Sim(n)), and from
Lemma 1, Sim(n) < n, so T2(n) ≤ S2(n).
Case 1: T (n) > S(Sim(n)) or Sim(n) is odd.
Proof by induction on the number of steps, i, in T .
When i = 2, T2(2) = 0 because the teacher pulls Arm∗ and
the learner pulls Arm1. The first step of S is a pull of Arm2,
so Sim(2) = 0 and S2(Sim(2)) = 0.
Assume that T2(i − 1) = S2(Sim(i − 1). Look at the next
action in T ; if it is a pull of Arm∗ or Arm1, then T2(i) =
T2(i−1) and Sim(i) = Sim(i−1) ⇒ S2(Sim(i)) = S2(Sim(i−
1)). If the next action is a pull of Arm2, then T2(i) = T2(i−
1) + 1 and S2(Sim(i)) = S2(Sim(i − 1)) + 1, because the
new pull of Arm2 can be used to simulate S at least one

more step, but only one more pull of Arm2 can be simulated.
Therefore T2(i) = S2(Sim(i)).
Case 2: T (n) = S(Sim(n)) and Sim(n) is even.

T2(n) = S2(Sim(n)) by the case assumptions.

Lemma 3. ∀n > 0, T∗(n) > S∗(n).

Proof. The proof progresses by reasoning about the pos-
sible histories that the teacher can simulate.
Case 1: T (n) > S(Sim(n)) or Sim(n) is odd.

The teacher in T has only pulled Arm∗, and the teacher in
S has pulled Arm2 at least once, so T∗(n) > S∗(n).
Case 2: T (n) = S(Sim(n)) and Sim(n) is even.

Let n′ be the first pull for which these conditions hold. At
step n′, the only difference between S and T is n′ − Sim(n′)
extra pulls of Arm∗ in T . Afterwards, there are n−n′ steps
in which S and T are identical, with x pulls of Arm∗ in this
period. The final n′ − Sim(n′) steps of S include at least
one pull of Arm1 or Arm2 (the learner’s first action and
any of its later actions). So T∗(n) = n′ − Sim(n′) + x and
S∗(n) ≤ x+n′ −Sim(n′)− 1. Therefore, T∗(n) > S∗(n).

From Lemmas 1-3, we know that for all time steps, T

has more pulls of Arm∗ than S and fewer pulls of Arm2

than S. Since the lemmas hold regardless of the values of
the pulls, we consider the expected values of each pull in-
dependently. So the expected value of each pull is just the
expected value of the arm. We know that the pulls of Arm2

must happen later in T , so they will be more discounted.
Similarly, the pulls of Arm∗ will occur sooner in T , and will
therefore be less discounted. Therefore, the low pulls are
more discounted and the high pulls are less discounted, so
E[V (T )] > E[V (S)]. So the teacher should never pull Arm2.

4.4 The teacher should not teach when n1 = 0
and/or n2 = 0

At the beginning of a task, the learner has no experience
with any of its arms, so it will explore its world optimisti-
cally, pulling each of the arms. From Section 4.2, we know
that the teacher should not pull any arm that the learner
is going to pull. Therefore, the teacher should not pull the
arms that the learner is going to explore.

5. MORE THAN THREE ARMS
Until this point, we have focused on the case where there

are three arms for the agents to pull. However, these results
generalize to the case where there are many arms.
First, notice that adding additional arms that are only

available to the teacher changes nothing. The teacher has
complete knowledge, so it should only consider the arm with
the greatest expected value. Therefore, we can continue to
call this arm Arm∗ and ignore these other arms.
We will focus on the case where there are arms Arm1,

Arm2, . . . , Armz and w.l.o.g. assume that µ1 > µ2 > . . . >

µz. The following conclusions follow quite simply.

• It can be beneficial for the teacher to pull Arm1 - Armz.
Examples similar to those in Section 4.1 can be con-
structed for this setting.

• The teacher should not teach with Armi when x̄i >

x̄j , ∀j 6= i. Similar to Section 4.2, if the agent is going
to pull Armi, the teacher should not pull Armi.



• Do not teach if ∃i s.t. ni = 0. The same reasoning
from Section 4.4 applies here, as the learner will opti-
mistically explore its world.

• The teacher should never pull Armz. If we consider
Arm1–Armz − 1 as one arm with a complex distribu-
tion, its mean will still be higher than that of Armz.
Therefore, the reasoning from Section 4.3 applies if we
consider this complex arm as Arm1 and Armz as Arm2;
thus, the teacher should always avoid pulling Armz.

We hypothesize that it can also be advantageous to teach
with Armj for j < k even when ∃i < j s.t. x̄i > x̄j , similar
to Stone and Kraus’s result [15]. However, this result is left
for future research.

6. RELATEDWORK
The formal description of ad hoc team problems was pro-

posed by Stone et al. [13]. This research builds on work by
Stone and Kraus [15]. They introduced this formulation of a
cooperative multi-armed bandit with a teacher and a learner.
However, they consider the case with a known, finite number
of rounds. This research extends their results into the case
of infinite, discounted rewards. The trash collecting robots
in our motivating example in Section 2 was taken from Stone
and Kraus, who were inspired by ad hoc human teams such
as [7].
Stone et al. [14] studied an ad hoc team setting involving

cooperating with a best response teammate on a repeated
normal-form game. They provide several interesting theo-
retical results as well proposing an efficient empirical algo-
rithm for handling teammates with short memories. Bar-
rett et al. [2] also investigate ad hoc teams, but in the pur-
suit (or predator-prey) domain. They take an empirical ap-
proach and develop an agent that plans using Monte Carlo
Tree Search (MCTS) using a set of known models of possible
teammates.
Other investigations of ad hoc teams include Brafman

and Tennenholtz’s work [5] in which one agent teaches an-
other while engaging in a repeated joint task. However, they
mainly focus on the case where teaching is not costly, and
the teacher’s goal is to help the learner maximize the times it
chooses the best action. We consider the case where teaching
has a cost, and the teacher’s goal is to maximize the shared
payoffs. Another domain that has been investigated is that
of simulated robot soccer. Bowling and McCracken [4] inves-
tigate the effectiveness of ad hoc agents, comparing them to
inoperative and absent players. Their ad hoc team agent has
a playbook different from that of its teammates and tries to
independently choose plays that perform well with its team.
Jones et al. [9] investigate pickup teams working in the

treasure hunt domain. These teams can consist of hetero-
geneous robots, but they coordinate by using a communica-
tion protocol that they use to bid on desired roles. Another
empirical approach is given by Knudson and Tumer [11].
However, all of their agents are adaptive and each is given
a clear metric of how each of its actions affect the teams’
performance.
A large body of work exists for coordinating teams of

agents using standard protocols for communication and coor-
dination such as SharedPlans [8], STEAM [17], and GPGP [6].
Our work does not assume that such a protocol is known by

all the agents.
The multi-armed bandit problem has been studied exten-

sively [3], and several variations have been considered in
which there are multiple agents that can observe the actions
or outcomes of each other. Keller and Rady [10] investi-
gate a two-armed bandit with multiple players cooperating.
In this scenario, there is a risky arm that distributes lump-
sum payoffs according to a Poisson distribution. The agents
share a common cut-off for their belief about the expected
reward of the risky arm and either all pull the risky arm or
all choose the other arm. Aoyagi [1] focuses on a two-armed
bandit problem with multiple players that can only observe
the actions on other players rather than the outcome of these
actions. Under some restrictions of the arms’ payoff distri-
butions, he proves that all players will settle on the same
arm. Our research indicates that learning from other agents
is possible without explicit communication.

7. CONCLUSIONS AND FUTUREWORK
This paper presents an extension of theory to the cooper-

ative multi-armed bandit problem with infinite, discounted
rewards. We have studied in detail the case where a teacher
knows the true payoff distribution of all of the arms, and,
while embedded in the domain, it interacts with a teammate
that lacks this information. In this setting, teaching has a
cost, and we give insight into the trade-off between teaching
and exploitation. We show that teaching can be advanta-
geous, but that there are some guidelines that the teacher
should follow, such as not teaching by pulling the worst arm.

This paper opens up several avenues for future research.
It motivates research into stateful, infinite reward problems,
such as those commonly faced in reinforcement learning. In
addition, it spurs research into the trade-offs between teach-
ing, exploration, and exploitation. Furthermore, more re-
search into teammates with more information and the possi-
bility of limited communication is needed. From a high level,
we view these results as a small step towards the long-term
goal of fully general and robust ad hoc team agents.
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